|
| class | Add |
| | Implementation of the Add module class. More...
|
| |
| class | AddMerge |
| | Implementation of the AddMerge module class. More...
|
| |
| class | AddVisitor |
| | AddVisitor exposes the Add() method of the given module. More...
|
| |
| class | BackwardVisitor |
| | BackwardVisitor executes the Backward() function given the input, error and delta parameter. More...
|
| |
| class | BaseLayer |
| | Implementation of the base layer. More...
|
| |
| class | Concat |
| | Implementation of the Concat class. More...
|
| |
| class | ConcatPerformance |
| | Implementation of the concat performance class. More...
|
| |
| class | Constant |
| | Implementation of the constant layer. More...
|
| |
| class | Convolution |
| | Implementation of the Convolution class. More...
|
| |
| class | DeleteVisitor |
| | DeleteVisitor executes the destructor of the instantiated object. More...
|
| |
| class | DeltaVisitor |
| | DeltaVisitor exposes the delta parameter of the given module. More...
|
| |
| class | DeterministicSetVisitor |
| | DeterministicSetVisitor set the deterministic parameter given the deterministic value. More...
|
| |
| class | DropConnect |
| | The DropConnect layer is a regularizer that randomly with probability ratio sets the connection values to zero and scales the remaining elements by factor 1 /(1 - ratio). More...
|
| |
| class | Dropout |
| | The dropout layer is a regularizer that randomly with probability ratio sets input values to zero and scales the remaining elements by factor 1 / (1 - ratio). More...
|
| |
| class | ELU |
| | The ELU activation function, defined by. More...
|
| |
| class | FFN |
| | Implementation of a standard feed forward network. More...
|
| |
| class | FFTConvolution |
| | Computes the two-dimensional convolution through fft. More...
|
| |
| class | ForwardVisitor |
| | ForwardVisitor executes the Forward() function given the input and output parameter. More...
|
| |
| class | FullConvolution |
| |
| class | Glimpse |
| | The glimpse layer returns a retina-like representation (down-scaled cropped images) of increasing scale around a given location in a given image. More...
|
| |
| class | GradientSetVisitor |
| | GradientSetVisitor update the gradient parameter given the gradient set. More...
|
| |
| class | GradientUpdateVisitor |
| | GradientUpdateVisitor update the gradient parameter given the gradient set. More...
|
| |
| class | GradientVisitor |
| | SearchModeVisitor executes the Gradient() method of the given module using the input and delta parameter. More...
|
| |
| class | GradientZeroVisitor |
| |
| class | HardTanH |
| | The Hard Tanh activation function, defined by. More...
|
| |
| class | IdentityFunction |
| | The identity function, defined by. More...
|
| |
| class | Join |
| | Implementation of the Join module class. More...
|
| |
| class | KathirvalavakumarSubavathiInitialization |
| | This class is used to initialize the weight matrix with the method proposed by T. More...
|
| |
| class | LayerTraits |
| | This is a template class that can provide information about various layers. More...
|
| |
| class | LeakyReLU |
| | The LeakyReLU activation function, defined by. More...
|
| |
| class | Linear |
| | Implementation of the Linear layer class. More...
|
| |
| class | LinearNoBias |
| | Implementation of the LinearNoBias class. More...
|
| |
| class | LoadOutputParameterVisitor |
| | LoadOutputParameterVisitor restores the output parameter using the given parameter set. More...
|
| |
| class | LogisticFunction |
| | The logistic function, defined by. More...
|
| |
| class | LogSoftMax |
| | Implementation of the log softmax layer. More...
|
| |
| class | Lookup |
| | Implementation of the Lookup class. More...
|
| |
| class | LSTM |
| | An implementation of a lstm network layer. More...
|
| |
| class | MaxPooling |
| | Implementation of the MaxPooling layer. More...
|
| |
| class | MaxPoolingRule |
| |
| class | MeanPooling |
| | Implementation of the MeanPooling. More...
|
| |
| class | MeanPoolingRule |
| |
| class | MeanSquaredError |
| | The mean squared error performance function measures the network's performance according to the mean of squared errors. More...
|
| |
| class | MultiplyConstant |
| | Implementation of the multiply constant layer. More...
|
| |
| class | NaiveConvolution |
| | Computes the two-dimensional convolution. More...
|
| |
| class | NegativeLogLikelihood |
| | Implementation of the negative log likelihood layer. More...
|
| |
| class | NguyenWidrowInitialization |
| | This class is used to initialize the weight matrix with the Nguyen-Widrow method. More...
|
| |
| class | OivsInitialization |
| | This class is used to initialize the weight matrix with the oivs method. More...
|
| |
| class | OrthogonalInitialization |
| | This class is used to initialize the weight matrix with the orthogonal matrix initialization. More...
|
| |
| class | OutputHeightVisitor |
| | OutputWidthVisitor exposes the OutputHeight() method of the given module. More...
|
| |
| class | OutputParameterVisitor |
| | OutputParameterVisitor exposes the output parameter of the given module. More...
|
| |
| class | OutputWidthVisitor |
| | OutputWidthVisitor exposes the OutputWidth() method of the given module. More...
|
| |
| class | ParametersSetVisitor |
| | ParametersSetVisitor update the parameters set using the given matrix. More...
|
| |
| class | ParametersVisitor |
| | ParametersVisitor exposes the parameters set of the given module and stores the parameters set into the given matrix. More...
|
| |
| class | PReLU |
| | The PReLU activation function, defined by (where alpha is trainable) More...
|
| |
| class | RandomInitialization |
| | This class is used to initialize randomly the weight matrix. More...
|
| |
| class | RectifierFunction |
| | The rectifier function, defined by. More...
|
| |
| class | Recurrent |
| | Implementation of the RecurrentLayer class. More...
|
| |
| class | RecurrentAttention |
| | This class implements the Recurrent Model for Visual Attention, using a variety of possible layer implementations. More...
|
| |
| class | ReinforceNormal |
| | Implementation of the reinforce normal layer. More...
|
| |
| class | ResetVisitor |
| | ResetVisitor executes the Reset() function. More...
|
| |
| class | RewardSetVisitor |
| | RewardSetVisitor set the reward parameter given the reward value. More...
|
| |
| class | RNN |
| | Implementation of a standard recurrent neural network container. More...
|
| |
| class | SaveOutputParameterVisitor |
| | SaveOutputParameterVisitor saves the output parameter into the given parameter set. More...
|
| |
| class | Select |
| | The select module selects the specified column from a given input matrix. More...
|
| |
| class | Sequential |
| | Implementation of the Sequential class. More...
|
| |
| class | SetInputHeightVisitor |
| | SetInputHeightVisitor updates the input height parameter with the given input height. More...
|
| |
| class | SetInputWidthVisitor |
| | SetInputWidthVisitor updates the input width parameter with the given input width. More...
|
| |
| class | SoftplusFunction |
| | The softplus function, defined by. More...
|
| |
| class | SoftsignFunction |
| | The softsign function, defined by. More...
|
| |
| class | SVDConvolution |
| | Computes the two-dimensional convolution using singular value decomposition. More...
|
| |
| class | TanhFunction |
| | The tanh function, defined by. More...
|
| |
| class | ValidConvolution |
| |
| class | VRClassReward |
| | Implementation of the variance reduced classification reinforcement layer. More...
|
| |
| class | WeightSetVisitor |
| | WeightSetVisitor update the module parameters given the parameters set. More...
|
| |
| class | WeightSizeVisitor |
| | WeightSizeVisitor returns the number of weights of the given module. More...
|
| |
| class | ZeroInitialization |
| | This class is used to initialize randomly the weight matrix. More...
|
| |
|
| template<class ActivationFunction = IdentityFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
| using | IdentityLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| | Standard Identity-Layer using the identity activation function. More...
|
| |
| using | LayerTypes = boost::variant< Add< arma::mat, arma::mat > *, AddMerge< arma::mat, arma::mat > *, BaseLayer< LogisticFunction, arma::mat, arma::mat > *, BaseLayer< IdentityFunction, arma::mat, arma::mat > *, BaseLayer< TanhFunction, arma::mat, arma::mat > *, BaseLayer< RectifierFunction, arma::mat, arma::mat > *, Concat< arma::mat, arma::mat > *, ConcatPerformance< NegativeLogLikelihood< arma::mat, arma::mat >, arma::mat, arma::mat > *, Constant< arma::mat, arma::mat > *, Convolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< FullConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, DropConnect< arma::mat, arma::mat > *, Dropout< arma::mat, arma::mat > *, Glimpse< arma::mat, arma::mat > *, HardTanH< arma::mat, arma::mat > *, Join< arma::mat, arma::mat > *, LeakyReLU< arma::mat, arma::mat > *, Linear< arma::mat, arma::mat > *, LinearNoBias< arma::mat, arma::mat > *, LogSoftMax< arma::mat, arma::mat > *, Lookup< arma::mat, arma::mat > *, LSTM< arma::mat, arma::mat > *, MaxPooling< arma::mat, arma::mat > *, MeanPooling< arma::mat, arma::mat > *, MeanSquaredError< arma::mat, arma::mat > *, MultiplyConstant< arma::mat, arma::mat > *, NegativeLogLikelihood< arma::mat, arma::mat > *, PReLU< arma::mat, arma::mat > *, Recurrent< arma::mat, arma::mat > *, RecurrentAttention< arma::mat, arma::mat > *, ReinforceNormal< arma::mat, arma::mat > *, Select< arma::mat, arma::mat > *, Sequential< arma::mat, arma::mat > *, VRClassReward< arma::mat, arma::mat > * > |
| |
| template<class ActivationFunction = RectifierFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
| using | ReLULayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| | Standard rectified linear unit non-linearity layer. More...
|
| |
| template<class ActivationFunction = LogisticFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
| using | SigmoidLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| | Standard Sigmoid-Layer using the logistic activation function. More...
|
| |
| template<class ActivationFunction = TanhFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
| using | TanHLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| | Standard hyperbolic tangent layer. More...
|
| |
Artificial Neural Network.