|
class | Add |
| Implementation of the Add module class. More...
|
|
class | AddMerge |
| Implementation of the AddMerge module class. More...
|
|
class | AddVisitor |
| AddVisitor exposes the Add() method of the given module. More...
|
|
class | BackwardVisitor |
| BackwardVisitor executes the Backward() function given the input, error and delta parameter. More...
|
|
class | BaseLayer |
| Implementation of the base layer. More...
|
|
class | Concat |
| Implementation of the Concat class. More...
|
|
class | ConcatPerformance |
| Implementation of the concat performance class. More...
|
|
class | Constant |
| Implementation of the constant layer. More...
|
|
class | Convolution |
| Implementation of the Convolution class. More...
|
|
class | DeleteVisitor |
| DeleteVisitor executes the destructor of the instantiated object. More...
|
|
class | DeltaVisitor |
| DeltaVisitor exposes the delta parameter of the given module. More...
|
|
class | DeterministicSetVisitor |
| DeterministicSetVisitor set the deterministic parameter given the deterministic value. More...
|
|
class | DropConnect |
| The DropConnect layer is a regularizer that randomly with probability ratio sets the connection values to zero and scales the remaining elements by factor 1 /(1 - ratio). More...
|
|
class | Dropout |
| The dropout layer is a regularizer that randomly with probability ratio sets input values to zero and scales the remaining elements by factor 1 / (1 - ratio). More...
|
|
class | ELU |
| The ELU activation function, defined by. More...
|
|
class | FFN |
| Implementation of a standard feed forward network. More...
|
|
class | FFTConvolution |
| Computes the two-dimensional convolution through fft. More...
|
|
class | ForwardVisitor |
| ForwardVisitor executes the Forward() function given the input and output parameter. More...
|
|
class | FullConvolution |
|
class | Glimpse |
| The glimpse layer returns a retina-like representation (down-scaled cropped images) of increasing scale around a given location in a given image. More...
|
|
class | GradientSetVisitor |
| GradientSetVisitor update the gradient parameter given the gradient set. More...
|
|
class | GradientUpdateVisitor |
| GradientUpdateVisitor update the gradient parameter given the gradient set. More...
|
|
class | GradientVisitor |
| SearchModeVisitor executes the Gradient() method of the given module using the input and delta parameter. More...
|
|
class | GradientZeroVisitor |
|
class | HardTanH |
| The Hard Tanh activation function, defined by. More...
|
|
class | IdentityFunction |
| The identity function, defined by. More...
|
|
class | Join |
| Implementation of the Join module class. More...
|
|
class | KathirvalavakumarSubavathiInitialization |
| This class is used to initialize the weight matrix with the method proposed by T. More...
|
|
class | LayerTraits |
| This is a template class that can provide information about various layers. More...
|
|
class | LeakyReLU |
| The LeakyReLU activation function, defined by. More...
|
|
class | Linear |
| Implementation of the Linear layer class. More...
|
|
class | LinearNoBias |
| Implementation of the LinearNoBias class. More...
|
|
class | LoadOutputParameterVisitor |
| LoadOutputParameterVisitor restores the output parameter using the given parameter set. More...
|
|
class | LogisticFunction |
| The logistic function, defined by. More...
|
|
class | LogSoftMax |
| Implementation of the log softmax layer. More...
|
|
class | Lookup |
| Implementation of the Lookup class. More...
|
|
class | LSTM |
| An implementation of a lstm network layer. More...
|
|
class | MaxPooling |
| Implementation of the MaxPooling layer. More...
|
|
class | MaxPoolingRule |
|
class | MeanPooling |
| Implementation of the MeanPooling. More...
|
|
class | MeanPoolingRule |
|
class | MeanSquaredError |
| The mean squared error performance function measures the network's performance according to the mean of squared errors. More...
|
|
class | MultiplyConstant |
| Implementation of the multiply constant layer. More...
|
|
class | NaiveConvolution |
| Computes the two-dimensional convolution. More...
|
|
class | NegativeLogLikelihood |
| Implementation of the negative log likelihood layer. More...
|
|
class | NguyenWidrowInitialization |
| This class is used to initialize the weight matrix with the Nguyen-Widrow method. More...
|
|
class | OivsInitialization |
| This class is used to initialize the weight matrix with the oivs method. More...
|
|
class | OrthogonalInitialization |
| This class is used to initialize the weight matrix with the orthogonal matrix initialization. More...
|
|
class | OutputHeightVisitor |
| OutputWidthVisitor exposes the OutputHeight() method of the given module. More...
|
|
class | OutputParameterVisitor |
| OutputParameterVisitor exposes the output parameter of the given module. More...
|
|
class | OutputWidthVisitor |
| OutputWidthVisitor exposes the OutputWidth() method of the given module. More...
|
|
class | ParametersSetVisitor |
| ParametersSetVisitor update the parameters set using the given matrix. More...
|
|
class | ParametersVisitor |
| ParametersVisitor exposes the parameters set of the given module and stores the parameters set into the given matrix. More...
|
|
class | PReLU |
| The PReLU activation function, defined by (where alpha is trainable) More...
|
|
class | RandomInitialization |
| This class is used to initialize randomly the weight matrix. More...
|
|
class | RectifierFunction |
| The rectifier function, defined by. More...
|
|
class | Recurrent |
| Implementation of the RecurrentLayer class. More...
|
|
class | RecurrentAttention |
| This class implements the Recurrent Model for Visual Attention, using a variety of possible layer implementations. More...
|
|
class | ReinforceNormal |
| Implementation of the reinforce normal layer. More...
|
|
class | ResetVisitor |
| ResetVisitor executes the Reset() function. More...
|
|
class | RewardSetVisitor |
| RewardSetVisitor set the reward parameter given the reward value. More...
|
|
class | RNN |
| Implementation of a standard recurrent neural network container. More...
|
|
class | SaveOutputParameterVisitor |
| SaveOutputParameterVisitor saves the output parameter into the given parameter set. More...
|
|
class | Select |
| The select module selects the specified column from a given input matrix. More...
|
|
class | Sequential |
| Implementation of the Sequential class. More...
|
|
class | SetInputHeightVisitor |
| SetInputHeightVisitor updates the input height parameter with the given input height. More...
|
|
class | SetInputWidthVisitor |
| SetInputWidthVisitor updates the input width parameter with the given input width. More...
|
|
class | SoftplusFunction |
| The softplus function, defined by. More...
|
|
class | SoftsignFunction |
| The softsign function, defined by. More...
|
|
class | SVDConvolution |
| Computes the two-dimensional convolution using singular value decomposition. More...
|
|
class | TanhFunction |
| The tanh function, defined by. More...
|
|
class | ValidConvolution |
|
class | VRClassReward |
| Implementation of the variance reduced classification reinforcement layer. More...
|
|
class | WeightSetVisitor |
| WeightSetVisitor update the module parameters given the parameters set. More...
|
|
class | WeightSizeVisitor |
| WeightSizeVisitor returns the number of weights of the given module. More...
|
|
class | ZeroInitialization |
| This class is used to initialize randomly the weight matrix. More...
|
|
|
template<class ActivationFunction = IdentityFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
using | IdentityLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| Standard Identity-Layer using the identity activation function. More...
|
|
using | LayerTypes = boost::variant< Add< arma::mat, arma::mat > *, AddMerge< arma::mat, arma::mat > *, BaseLayer< LogisticFunction, arma::mat, arma::mat > *, BaseLayer< IdentityFunction, arma::mat, arma::mat > *, BaseLayer< TanhFunction, arma::mat, arma::mat > *, BaseLayer< RectifierFunction, arma::mat, arma::mat > *, Concat< arma::mat, arma::mat > *, ConcatPerformance< NegativeLogLikelihood< arma::mat, arma::mat >, arma::mat, arma::mat > *, Constant< arma::mat, arma::mat > *, Convolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< FullConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, DropConnect< arma::mat, arma::mat > *, Dropout< arma::mat, arma::mat > *, Glimpse< arma::mat, arma::mat > *, HardTanH< arma::mat, arma::mat > *, Join< arma::mat, arma::mat > *, LeakyReLU< arma::mat, arma::mat > *, Linear< arma::mat, arma::mat > *, LinearNoBias< arma::mat, arma::mat > *, LogSoftMax< arma::mat, arma::mat > *, Lookup< arma::mat, arma::mat > *, LSTM< arma::mat, arma::mat > *, MaxPooling< arma::mat, arma::mat > *, MeanPooling< arma::mat, arma::mat > *, MeanSquaredError< arma::mat, arma::mat > *, MultiplyConstant< arma::mat, arma::mat > *, NegativeLogLikelihood< arma::mat, arma::mat > *, PReLU< arma::mat, arma::mat > *, Recurrent< arma::mat, arma::mat > *, RecurrentAttention< arma::mat, arma::mat > *, ReinforceNormal< arma::mat, arma::mat > *, Select< arma::mat, arma::mat > *, Sequential< arma::mat, arma::mat > *, VRClassReward< arma::mat, arma::mat > * > |
|
template<class ActivationFunction = RectifierFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
using | ReLULayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| Standard rectified linear unit non-linearity layer. More...
|
|
template<class ActivationFunction = LogisticFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
using | SigmoidLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| Standard Sigmoid-Layer using the logistic activation function. More...
|
|
template<class ActivationFunction = TanhFunction, typename InputDataType = arma::mat, typename OutputDataType = arma::mat> |
using | TanHLayer = BaseLayer< ActivationFunction, InputDataType, OutputDataType > |
| Standard hyperbolic tangent layer. More...
|
|
Artificial Neural Network.