mlpack  master
layer_types.hpp
Go to the documentation of this file.
1 
12 #ifndef MLPACK_METHODS_ANN_LAYER_LAYER_TYPES_HPP
13 #define MLPACK_METHODS_ANN_LAYER_LAYER_TYPES_HPP
14 
15 #include <boost/variant.hpp>
16 
17 // Layer modules.
36 
37 // Convolution modules.
41 
42 namespace mlpack {
43 namespace ann {
44 
45 template<typename InputDataType, typename OutputDataType> class AddMerge;
46 template<typename InputDataType, typename OutputDataType> class Concat;
47 template<typename InputDataType, typename OutputDataType> class DropConnect;
48 template<typename InputDataType, typename OutputDataType> class Glimpse;
49 template<typename InputDataType, typename OutputDataType> class Linear;
50 template<typename InputDataType, typename OutputDataType> class LinearNoBias;
51 template<typename InputDataType, typename OutputDataType> class LSTM;
52 template<typename InputDataType, typename OutputDataType> class Recurrent;
53 template<typename InputDataType, typename OutputDataType> class Sequential;
54 template<typename InputDataType, typename OutputDataType> class VRClassReward;
55 
56 template<
57  typename OutputLayerType,
58  typename InputDataType,
59  typename OutputDataType
60 >
61 class ConcatPerformance;
62 
63 template<
64  typename ForwardConvolutionRule,
65  typename BackwardConvolutionRule,
66  typename GradientConvolutionRule,
67  typename InputDataType,
68  typename OutputDataType
69 >
70 class Convolution;
71 
72 template<
73  typename InputDataType,
74  typename OutputDataType
75 >
77 
78 using LayerTypes = boost::variant<
87  arma::mat, arma::mat>*,
91  NaiveConvolution<ValidConvolution>, arma::mat, arma::mat>*,
115 >;
116 
117 } // namespace ann
118 } // namespace mlpack
119 
120 #endif
Implementation of the variance reduced classification reinforcement layer.
Definition: layer_types.hpp:54
Implementation of the Add module class.
Definition: add.hpp:34
Implementation of the log softmax layer.
Definition: log_softmax.hpp:36
Implementation of the AddMerge module class.
Definition: add_merge.hpp:40
Linear algebra utility functions, generally performed on matrices or vectors.
Definition: binarize.hpp:18
Implementation of the reinforce normal layer.
Implementation of the Linear layer class.
Definition: layer_types.hpp:49
The LeakyReLU activation function, defined by.
Definition: leaky_relu.hpp:44
This class implements the Recurrent Model for Visual Attention, using a variety of possible layer imp...
Definition: layer_types.hpp:76
Implementation of the Convolution class.
Definition: convolution.hpp:46
Implementation of the MeanPooling.
Implementation of the Join module class.
Definition: join.hpp:33
Implementation of the concat performance class.
The Hard Tanh activation function, defined by.
Definition: hard_tanh.hpp:49
The select module selects the specified column from a given input matrix.
Definition: select.hpp:32
Implementation of the negative log likelihood layer.
The PReLU activation function, defined by (where alpha is trainable)
Implementation of the base layer.
Definition: base_layer.hpp:47
Implementation of the Concat class.
Definition: concat.hpp:42
An implementation of a lstm network layer.
Definition: layer_types.hpp:51
Implementation of the Lookup class.
Definition: lookup.hpp:35
Implementation of the LinearNoBias class.
Definition: layer_types.hpp:50
boost::variant< Add< arma::mat, arma::mat > *, AddMerge< arma::mat, arma::mat > *, BaseLayer< LogisticFunction, arma::mat, arma::mat > *, BaseLayer< IdentityFunction, arma::mat, arma::mat > *, BaseLayer< TanhFunction, arma::mat, arma::mat > *, BaseLayer< RectifierFunction, arma::mat, arma::mat > *, Concat< arma::mat, arma::mat > *, ConcatPerformance< NegativeLogLikelihood< arma::mat, arma::mat >, arma::mat, arma::mat > *, Constant< arma::mat, arma::mat > *, Convolution< NaiveConvolution< ValidConvolution >, NaiveConvolution< FullConvolution >, NaiveConvolution< ValidConvolution >, arma::mat, arma::mat > *, DropConnect< arma::mat, arma::mat > *, Dropout< arma::mat, arma::mat > *, Glimpse< arma::mat, arma::mat > *, HardTanH< arma::mat, arma::mat > *, Join< arma::mat, arma::mat > *, LeakyReLU< arma::mat, arma::mat > *, Linear< arma::mat, arma::mat > *, LinearNoBias< arma::mat, arma::mat > *, LogSoftMax< arma::mat, arma::mat > *, Lookup< arma::mat, arma::mat > *, LSTM< arma::mat, arma::mat > *, MaxPooling< arma::mat, arma::mat > *, MeanPooling< arma::mat, arma::mat > *, MeanSquaredError< arma::mat, arma::mat > *, MultiplyConstant< arma::mat, arma::mat > *, NegativeLogLikelihood< arma::mat, arma::mat > *, PReLU< arma::mat, arma::mat > *, Recurrent< arma::mat, arma::mat > *, RecurrentAttention< arma::mat, arma::mat > *, ReinforceNormal< arma::mat, arma::mat > *, Select< arma::mat, arma::mat > *, Sequential< arma::mat, arma::mat > *, VRClassReward< arma::mat, arma::mat > * > LayerTypes
Computes the two-dimensional convolution.
The dropout layer is a regularizer that randomly with probability ratio sets input values to zero and...
Definition: dropout.hpp:54
The glimpse layer returns a retina-like representation (down-scaled cropped images) of increasing sca...
Definition: glimpse.hpp:82
The DropConnect layer is a regularizer that randomly with probability ratio sets the connection value...
Definition: dropconnect.hpp:62
The mean squared error performance function measures the network&#39;s performance according to the mean ...
Implementation of the multiply constant layer.
Implementation of the RecurrentLayer class.
Definition: layer_types.hpp:52
Implementation of the Sequential class.
Definition: layer_types.hpp:53
Implementation of the constant layer.
Definition: constant.hpp:34
Implementation of the MaxPooling layer.
Definition: max_pooling.hpp:52