|
| Convolution () |
| Create the Convolution object. More...
|
|
| Convolution (const size_t inSize, const size_t outSize, const size_t kW, const size_t kH, const size_t dW=1, const size_t dH=1, const size_t padW=0, const size_t padH=0, const size_t inputWidth=0, const size_t inputHeight=0) |
| Create the Convolution object using the specified number of input maps, output maps, filter size, stride and padding parameter. More...
|
|
template<typename eT > |
void | Backward (const arma::Mat< eT > &&, arma::Mat< eT > &&gy, arma::Mat< eT > &&g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f. More...
|
|
OutputDataType const & | Delta () const |
| Get the delta. More...
|
|
OutputDataType & | Delta () |
| Modify the delta. More...
|
|
template<typename eT > |
void | Forward (const arma::Mat< eT > &&input, arma::Mat< eT > &&output) |
| Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
|
|
template<typename eT > |
void | Gradient (const arma::Mat< eT > &&, arma::Mat< eT > &&error, arma::Mat< eT > &&gradient) |
|
OutputDataType const & | Gradient () const |
| Get the gradient. More...
|
|
OutputDataType & | Gradient () |
| Modify the gradient. More...
|
|
size_t const & | InputHeight () const |
| Get the input height. More...
|
|
size_t & | InputHeight () |
| Modify the input height. More...
|
|
InputDataType const & | InputParameter () const |
| Get the input parameter. More...
|
|
InputDataType & | InputParameter () |
| Modify the input parameter. More...
|
|
size_t const & | InputWidth () const |
| Get the input width. More...
|
|
size_t & | InputWidth () |
| Modify input the width. More...
|
|
size_t const & | OutputHeight () const |
| Get the output height. More...
|
|
size_t & | OutputHeight () |
| Modify the output height. More...
|
|
OutputDataType const & | OutputParameter () const |
| Get the output parameter. More...
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter. More...
|
|
size_t const & | OutputWidth () const |
| Get the output width. More...
|
|
size_t & | OutputWidth () |
| Modify the output width. More...
|
|
OutputDataType const & | Parameters () const |
| Get the parameters. More...
|
|
OutputDataType & | Parameters () |
| Modify the parameters. More...
|
|
void | Reset () |
|
template<typename Archive > |
void | Serialize (Archive &ar, const unsigned int) |
| Serialize the layer. More...
|
|
|
size_t | ConvOutSize (const size_t size, const size_t k, const size_t s, const size_t p) |
|
template<typename eT > |
void | Pad (const arma::Mat< eT > &input, size_t wPad, size_t hPad, arma::Mat< eT > &output) |
|
template<typename eT > |
void | Pad (const arma::Cube< eT > &input, size_t wPad, size_t hPad, arma::Cube< eT > &output) |
|
template<typename eT > |
void | Rotate180 (const arma::Cube< eT > &input, arma::Cube< eT > &output) |
|
template<typename eT > |
void | Rotate180 (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
|
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >
Implementation of the Convolution class.
The Convolution class represents a single layer of a neural network.
- Template Parameters
-
ForwardConvolutionRule | Convolution to perform forward process. |
BackwardConvolutionRule | Convolution to perform backward process. |
GradientConvolutionRule | Convolution to calculate gradient. |
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 46 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Convolution |
( |
const size_t |
inSize, |
|
|
const size_t |
outSize, |
|
|
const size_t |
kW, |
|
|
const size_t |
kH, |
|
|
const size_t |
dW = 1 , |
|
|
const size_t |
dH = 1 , |
|
|
const size_t |
padW = 0 , |
|
|
const size_t |
padH = 0 , |
|
|
const size_t |
inputWidth = 0 , |
|
|
const size_t |
inputHeight = 0 |
|
) |
| |
Create the Convolution object using the specified number of input maps, output maps, filter size, stride and padding parameter.
- Parameters
-
inSize | The number of input maps. |
outSize | The number of output maps. |
kW | Width of the filter/kernel. |
kH | Height of the filter/kernel. |
dW | Stride of filter application in the x direction. |
dH | Stride of filter application in the y direction. |
padW | Padding width of the input. |
padH | Padding height of the input. |
inputWidth | The widht of the input data. |
inputHeight | The height of the input data. |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
template<typename eT >
void mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Backward |
( |
const arma::Mat< eT > && |
, |
|
|
arma::Mat< eT > && |
gy, |
|
|
arma::Mat< eT > && |
g |
|
) |
| |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards through f.
Using the results from the feed forward pass.
- Parameters
-
input | The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Delta |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Delta |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
template<typename eT >
void mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Forward |
( |
const arma::Mat< eT > && |
input, |
|
|
arma::Mat< eT > && |
output |
|
) |
| |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
- Parameters
-
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Gradient |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Gradient |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::InputHeight |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::InputHeight |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
InputDataType const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::InputParameter |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
InputDataType& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::InputParameter |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::InputWidth |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::InputWidth |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::OutputHeight |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::OutputHeight |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::OutputParameter |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::OutputParameter |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::OutputWidth |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::OutputWidth |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType const& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Parameters |
( |
| ) |
const |
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType& mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Parameters |
( |
| ) |
|
|
inline |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
template<typename Archive >
void mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::Serialize |
( |
Archive & |
ar, |
|
|
const unsigned |
int |
|
) |
| |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
arma::mat mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::bias |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::delta |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::dH |
|
private |
Locally-stored stride of the filter in y-direction.
Definition at line 281 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::dW |
|
private |
Locally-stored stride of the filter in x-direction.
Definition at line 278 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::gradient |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
arma::cube mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::gradientTemp |
|
private |
Locally-stored transformed gradient parameter.
Definition at line 323 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
arma::cube mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::gTemp |
|
private |
Locally-stored transformed error parameter.
Definition at line 320 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::inputHeight |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
arma::cube mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::inputPaddedTemp |
|
private |
Locally-stored transformed padded input parameter.
Definition at line 317 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
InputDataType mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::inputParameter |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
arma::cube mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::inputTemp |
|
private |
Locally-stored transformed input parameter.
Definition at line 314 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::inputWidth |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::inSize |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::kH |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::kW |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::outputHeight |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::outputParameter |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
arma::cube mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::outputTemp |
|
private |
Locally-stored transformed output parameter.
Definition at line 311 of file convolution.hpp.
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::outputWidth |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::outSize |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::padH |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
size_t mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::padW |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
arma::cube mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::weight |
|
private |
template<typename ForwardConvolutionRule = NaiveConvolution<ValidConvolution>, typename BackwardConvolutionRule = NaiveConvolution<FullConvolution>, typename GradientConvolutionRule = NaiveConvolution<ValidConvolution>, typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
OutputDataType mlpack::ann::Convolution< ForwardConvolutionRule, BackwardConvolutionRule, GradientConvolutionRule, InputDataType, OutputDataType >::weights |
|
private |