14 #ifndef MLPACK_CORE_KERNELS_GAUSSIAN_KERNEL_HPP 15 #define MLPACK_CORE_KERNELS_GAUSSIAN_KERNEL_HPP 50 gamma(-0.5 * pow(bandwidth, -2.0))
64 template<
typename VecTypeA,
typename VecTypeB>
65 double Evaluate(
const VecTypeA& a,
const VecTypeB& b)
const 81 return exp(
gamma * std::pow(t, 2.0));
93 return 2 * t *
gamma * exp(
gamma * std::pow(t, 2.0));
116 return pow(sqrt(2.0 *
M_PI) *
bandwidth, (
double) dimension);
126 template<
typename VecTypeA,
typename VecTypeB>
130 (
Normalizer(a.n_rows) * pow(2.0, (
double) a.n_rows / 2.0));
142 this->
gamma = -0.5 * pow(bandwidth, -2.0);
149 template<
typename Archive>
171 static const bool IsNormalized =
true;
173 static const bool UsesSquaredDistance =
true;
GaussianKernel()
Default constructor; sets bandwidth to 1.0.
double ConvolutionIntegral(const VecTypeA &a, const VecTypeB &b)
Obtain a convolution integral of the Gaussian kernel.
This is a template class that can provide information about various kernels.
Linear algebra utility functions, generally performed on matrices or vectors.
The core includes that mlpack expects; standard C++ includes and Armadillo.
FirstShim< T > CreateNVP(T &t, const std::string &name, typename std::enable_if_t< HasSerialize< T >::value > *=0)
Call this function to produce a name-value pair; this is similar to BOOST_SERIALIZATION_NVP(), but should be used for types that have a Serialize() function (or contain a type that has a Serialize() function) instead of a serialize() function.
void Bandwidth(const double bandwidth)
Modify the bandwidth.
double Evaluate(const double t) const
Evaluation of the Gaussian kernel given the distance between two points.
double gamma
Precalculated constant depending on the bandwidth; .
double GradientForSquaredDistance(const double t) const
Evaluation of the gradient of Gaussian kernel given the squared distance between two points...
double Gradient(const double t) const
Evaluation of the gradient of Gaussian kernel given the distance between two points.
void Serialize(Archive &ar, const unsigned int)
Serialize the kernel.
static VecTypeA::elem_type Evaluate(const VecTypeA &a, const VecTypeB &b)
Computes the distance between two points.
GaussianKernel(const double bandwidth)
Construct the Gaussian kernel with a custom bandwidth.
double Normalizer(const size_t dimension)
Obtain the normalization constant of the Gaussian kernel.
double Bandwidth() const
Get the bandwidth.
The standard Gaussian kernel.
double Evaluate(const VecTypeA &a, const VecTypeB &b) const
Evaluation of the Gaussian kernel.
double Gamma() const
Get the precalculated constant.
double bandwidth
Kernel bandwidth.