mlpack  master
gaussian_kernel.hpp
Go to the documentation of this file.
1 
14 #ifndef MLPACK_CORE_KERNELS_GAUSSIAN_KERNEL_HPP
15 #define MLPACK_CORE_KERNELS_GAUSSIAN_KERNEL_HPP
16 
17 #include <mlpack/prereqs.hpp>
20 
21 namespace mlpack {
22 namespace kernel {
23 
35 {
36  public:
40  GaussianKernel() : bandwidth(1.0), gamma(-0.5)
41  { }
42 
48  GaussianKernel(const double bandwidth) :
49  bandwidth(bandwidth),
50  gamma(-0.5 * pow(bandwidth, -2.0))
51  { }
52 
64  template<typename VecTypeA, typename VecTypeB>
65  double Evaluate(const VecTypeA& a, const VecTypeB& b) const
66  {
67  // The precalculation of gamma saves us a little computation time.
69  }
70 
78  double Evaluate(const double t) const
79  {
80  // The precalculation of gamma saves us a little computation time.
81  return exp(gamma * std::pow(t, 2.0));
82  }
83 
92  double Gradient(const double t) const {
93  return 2 * t * gamma * exp(gamma * std::pow(t, 2.0));
94  }
95 
104  double GradientForSquaredDistance(const double t) const {
105  return gamma * exp(gamma * t);
106  }
107 
114  double Normalizer(const size_t dimension)
115  {
116  return pow(sqrt(2.0 * M_PI) * bandwidth, (double) dimension);
117  }
118 
126  template<typename VecTypeA, typename VecTypeB>
127  double ConvolutionIntegral(const VecTypeA& a, const VecTypeB& b)
128  {
129  return Evaluate(sqrt(metric::SquaredEuclideanDistance::Evaluate(a, b) / 2.0)) /
130  (Normalizer(a.n_rows) * pow(2.0, (double) a.n_rows / 2.0));
131  }
132 
133 
135  double Bandwidth() const { return bandwidth; }
136 
139  void Bandwidth(const double bandwidth)
140  {
141  this->bandwidth = bandwidth;
142  this->gamma = -0.5 * pow(bandwidth, -2.0);
143  }
144 
146  double Gamma() const { return gamma; }
147 
149  template<typename Archive>
150  void Serialize(Archive& ar, const unsigned int /* version */)
151  {
152  ar & data::CreateNVP(bandwidth, "bandwidth");
153  ar & data::CreateNVP(gamma, "gamma");
154  }
155 
156  private:
158  double bandwidth;
159 
162  double gamma;
163 };
164 
166 template<>
168 {
169  public:
171  static const bool IsNormalized = true;
173  static const bool UsesSquaredDistance = true;
174 };
175 
176 } // namespace kernel
177 } // namespace mlpack
178 
179 #endif
GaussianKernel()
Default constructor; sets bandwidth to 1.0.
double ConvolutionIntegral(const VecTypeA &a, const VecTypeB &b)
Obtain a convolution integral of the Gaussian kernel.
This is a template class that can provide information about various kernels.
Linear algebra utility functions, generally performed on matrices or vectors.
Definition: binarize.hpp:18
The core includes that mlpack expects; standard C++ includes and Armadillo.
FirstShim< T > CreateNVP(T &t, const std::string &name, typename std::enable_if_t< HasSerialize< T >::value > *=0)
Call this function to produce a name-value pair; this is similar to BOOST_SERIALIZATION_NVP(), but should be used for types that have a Serialize() function (or contain a type that has a Serialize() function) instead of a serialize() function.
void Bandwidth(const double bandwidth)
Modify the bandwidth.
double Evaluate(const double t) const
Evaluation of the Gaussian kernel given the distance between two points.
double gamma
Precalculated constant depending on the bandwidth; .
#define M_PI
Definition: prereqs.hpp:40
double GradientForSquaredDistance(const double t) const
Evaluation of the gradient of Gaussian kernel given the squared distance between two points...
double Gradient(const double t) const
Evaluation of the gradient of Gaussian kernel given the distance between two points.
void Serialize(Archive &ar, const unsigned int)
Serialize the kernel.
static VecTypeA::elem_type Evaluate(const VecTypeA &a, const VecTypeB &b)
Computes the distance between two points.
GaussianKernel(const double bandwidth)
Construct the Gaussian kernel with a custom bandwidth.
double Normalizer(const size_t dimension)
Obtain the normalization constant of the Gaussian kernel.
double Bandwidth() const
Get the bandwidth.
The standard Gaussian kernel.
double Evaluate(const VecTypeA &a, const VecTypeB &b) const
Evaluation of the Gaussian kernel.
double Gamma() const
Get the precalculated constant.
double bandwidth
Kernel bandwidth.