mlpack
master
|
Miscellaneous math routines. More...
Classes | |
class | ColumnsToBlocks |
Transform the columns of the given matrix into a block format. More... | |
class | RangeType |
Simple real-valued range. More... | |
Typedefs | |
typedef RangeType< double > | Range |
3.0.0 TODO: break reverse-compatibility by changing RangeType to Range. More... | |
Functions | |
void | Center (const arma::mat &x, arma::mat &xCentered) |
Creates a centered matrix, where centering is done by subtracting the sum over the columns (a column vector) from each column of the matrix. More... | |
double | ClampNonNegative (const double d) |
Forces a number to be non-negative, turning negative numbers into zero. More... | |
double | ClampNonPositive (const double d) |
Forces a number to be non-positive, turning positive numbers into zero. More... | |
double | ClampRange (double value, const double rangeMin, const double rangeMax) |
Clamp a number between a particular range. More... | |
void | ObtainDistinctSamples (const size_t loInclusive, const size_t hiExclusive, const size_t maxNumSamples, arma::uvec &distinctSamples) |
Obtains no more than maxNumSamples distinct samples. More... | |
void | Orthogonalize (const arma::mat &x, arma::mat &W) |
Orthogonalize x and return the result in W, using eigendecomposition. More... | |
void | Orthogonalize (arma::mat &x) |
Orthogonalize x in-place. More... | |
int | RandInt (const int hiExclusive) |
Generates a uniform random integer. More... | |
int | RandInt (const int lo, const int hiExclusive) |
Generates a uniform random integer. More... | |
double | RandNormal () |
Generates a normally distributed random number with mean 0 and variance 1. More... | |
double | RandNormal (const double mean, const double variance) |
Generates a normally distributed random number with specified mean and variance. More... | |
double | Random () |
Generates a uniform random number between 0 and 1. More... | |
double | Random (const double lo, const double hi) |
Generates a uniform random number in the specified range. More... | |
void | RandomBasis (arma::mat &basis, const size_t d) |
Create a random d-dimensional orthogonal basis, storing it in the given matrix. More... | |
void | RandomSeed (const size_t seed) |
Set the random seed used by the random functions (Random() and RandInt()). More... | |
void | RandVector (arma::vec &v) |
Overwrites a dimension-N vector to a random vector on the unit sphere in R^N. More... | |
void | RemoveRows (const arma::mat &input, const std::vector< size_t > &rowsToRemove, arma::mat &output) |
Remove a certain set of rows in a matrix while copying to a second matrix. More... | |
void | Smat (const arma::vec &input, arma::mat &output) |
The inverse of Svec. More... | |
void | Svec (const arma::mat &input, arma::vec &output) |
Upper triangular representation of a symmetric matrix, scaled such that, dot(Svec(A), Svec(B)) == dot(A, B) for symmetric A, B. More... | |
void | Svec (const arma::sp_mat &input, arma::sp_vec &output) |
size_t | SvecIndex (size_t i, size_t j, size_t n) |
Return the index such that A[i,j] == factr(i, j) * svec(A)[pos(i, j)], where factr(i, j) = sqrt(2) if i != j and 1 otherwise. More... | |
void | SymKronId (const arma::mat &A, arma::mat &op) |
If A is a symmetric matrix, then SymKronId returns an operator Op such that. More... | |
void | VectorPower (arma::vec &vec, const double power) |
Auxiliary function to raise vector elements to a specific power. More... | |
void | WhitenUsingEig (const arma::mat &x, arma::mat &xWhitened, arma::mat &whiteningMatrix) |
Whitens a matrix using the eigendecomposition of the covariance matrix. More... | |
void | WhitenUsingSVD (const arma::mat &x, arma::mat &xWhitened, arma::mat &whiteningMatrix) |
Whitens a matrix using the singular value decomposition of the covariance matrix. More... | |
Variables | |
MLPACK_EXPORT std::mt19937 | randGen |
MLPACK_EXPORT is required for global variables; it exports the symbols correctly on Windows. More... | |
MLPACK_EXPORT std::normal_distribution | randNormalDist |
MLPACK_EXPORT std::uniform_real_distribution | randUniformDist |
Miscellaneous math routines.
typedef RangeType<double> mlpack::math::Range |
void mlpack::math::Center | ( | const arma::mat & | x, |
arma::mat & | xCentered | ||
) |
Creates a centered matrix, where centering is done by subtracting the sum over the columns (a column vector) from each column of the matrix.
x | Input matrix |
xCentered | Matrix to write centered output into |
Referenced by mlpack::kpca::NystroemKernelRule< KernelType, PointSelectionPolicy >::ApplyKernelMatrix(), and mlpack::bound::HRectBound< MetricType >::MinWidth().
|
inline |
Forces a number to be non-negative, turning negative numbers into zero.
Avoids branching costs (this is a measurable improvement).
d | Double to clamp. |
Definition at line 28 of file clamp.hpp.
Referenced by ClampRange().
|
inline |
Forces a number to be non-positive, turning positive numbers into zero.
Avoids branching costs (this is a measurable improvement).
d | Double to clamp. |
0 | if d > 0, d otherwise. |
Definition at line 40 of file clamp.hpp.
Referenced by ClampRange().
|
inline |
Clamp a number between a particular range.
value | The number to clamp. |
rangeMin | The first of the range. |
rangeMax | The last of the range. |
Definition at line 53 of file clamp.hpp.
References ClampNonNegative(), and ClampNonPositive().
|
inline |
Obtains no more than maxNumSamples distinct samples.
Each sample belongs to [loInclusive, hiExclusive).
loInclusive | The lower bound (inclusive). |
hiExclusive | The high bound (exclusive). |
maxNumSamples | The maximum number of samples to obtain. |
distinctSamples | The samples that will be obtained. |
Definition at line 114 of file random.hpp.
References RandInt().
void mlpack::math::Orthogonalize | ( | const arma::mat & | x, |
arma::mat & | W | ||
) |
Orthogonalize x and return the result in W, using eigendecomposition.
We will be using the formula .
void mlpack::math::Orthogonalize | ( | arma::mat & | x | ) |
Orthogonalize x in-place.
This could be sped up by a custom implementation.
|
inline |
Generates a uniform random integer.
Definition at line 71 of file random.hpp.
References randUniformDist.
Referenced by mlpack::kmeans::SampleInitialization::Cluster(), mlpack::sparse_coding::DataDependentRandomInitializer::Initialize(), mlpack::amf::RandomAcolInitialization< columnsToAverage >::Initialize(), ObtainDistinctSamples(), mlpack::dbscan::RandomPointSelection::Select(), and mlpack::kernel::RandomSelection::Select().
|
inline |
Generates a uniform random integer.
Definition at line 79 of file random.hpp.
References randUniformDist.
|
inline |
Generates a normally distributed random number with mean 0 and variance 1.
Definition at line 88 of file random.hpp.
References randNormalDist.
|
inline |
Generates a normally distributed random number with specified mean and variance.
mean | Mean of distribution. |
variance | Variance of distribution. |
Definition at line 100 of file random.hpp.
References randNormalDist.
|
inline |
Generates a uniform random number between 0 and 1.
Definition at line 55 of file random.hpp.
References randUniformDist.
|
inline |
Generates a uniform random number in the specified range.
Definition at line 63 of file random.hpp.
References randUniformDist.
void mlpack::math::RandomBasis | ( | arma::mat & | basis, |
const size_t | d | ||
) |
Create a random d-dimensional orthogonal basis, storing it in the given matrix.
basis | Matrix to store basis in. |
d | Desired number of dimensions in the basis. |
|
inline |
Set the random seed used by the random functions (Random() and RandInt()).
The seed is casted to a 32-bit integer before being given to the random number generator, but a size_t is taken as a parameter for API consistency.
seed | Seed for the random number generator. |
Definition at line 40 of file random.hpp.
void mlpack::math::RandVector | ( | arma::vec & | v | ) |
Overwrites a dimension-N vector to a random vector on the unit sphere in R^N.
void mlpack::math::RemoveRows | ( | const arma::mat & | input, |
const std::vector< size_t > & | rowsToRemove, | ||
arma::mat & | output | ||
) |
Remove a certain set of rows in a matrix while copying to a second matrix.
input | Input matrix to copy. |
rowsToRemove | Vector containing indices of rows to be removed. |
output | Matrix to copy non-removed rows into. |
void mlpack::math::Smat | ( | const arma::vec & | input, |
arma::mat & | output | ||
) |
The inverse of Svec.
That is, Smat(Svec(A)) == A.
input | |
output | A symmetric matrix |
void mlpack::math::Svec | ( | const arma::mat & | input, |
arma::vec & | output | ||
) |
Upper triangular representation of a symmetric matrix, scaled such that, dot(Svec(A), Svec(B)) == dot(A, B) for symmetric A, B.
Specifically,
Svec(K) = [ K_11, sqrt(2) K_12, ..., sqrt(2) K_1n, K_22, ..., sqrt(2) K_2n, ..., K_nn ]^T
input | A symmetric matrix |
output |
void mlpack::math::Svec | ( | const arma::sp_mat & | input, |
arma::sp_vec & | output | ||
) |
|
inline |
Return the index such that A[i,j] == factr(i, j) * svec(A)[pos(i, j)], where factr(i, j) = sqrt(2) if i != j and 1 otherwise.
i | |
j | |
n |
void mlpack::math::SymKronId | ( | const arma::mat & | A, |
arma::mat & | op | ||
) |
If A is a symmetric matrix, then SymKronId returns an operator Op such that.
Op * svec(X) == svec(0.5 * (AX + XA))
for every symmetric matrix X
A | |
op |
void mlpack::math::VectorPower | ( | arma::vec & | vec, |
const double | power | ||
) |
Auxiliary function to raise vector elements to a specific power.
The sign is ignored in the power operation and then re-added. Useful for eigenvalues.
void mlpack::math::WhitenUsingEig | ( | const arma::mat & | x, |
arma::mat & | xWhitened, | ||
arma::mat & | whiteningMatrix | ||
) |
Whitens a matrix using the eigendecomposition of the covariance matrix.
Whitening means the covariance matrix of the result is the identity matrix.
void mlpack::math::WhitenUsingSVD | ( | const arma::mat & | x, |
arma::mat & | xWhitened, | ||
arma::mat & | whiteningMatrix | ||
) |
Whitens a matrix using the singular value decomposition of the covariance matrix.
Whitening means the covariance matrix of the result is the identity matrix.
MLPACK_EXPORT std::mt19937 mlpack::math::randGen |
MLPACK_EXPORT is required for global variables; it exports the symbols correctly on Windows.
MLPACK_EXPORT std::normal_distribution mlpack::math::randNormalDist |
Referenced by RandNormal().