|
mlpack
master
|
Alternating Matrix Factorization. More...
Classes | |
| class | AMF |
| This class implements AMF (alternating matrix factorization) on the given matrix V. More... | |
| class | AverageInitialization |
| This initialization rule initializes matrix W and H to root of the average of V, perturbed with uniform noise. More... | |
| class | CompleteIncrementalTermination |
| This class acts as a wrapper for basic termination policies to be used by SVDCompleteIncrementalLearning. More... | |
| class | GivenInitialization |
| This initialization rule for AMF simply fills the W and H matrices with the matrices given to the constructor of this object. More... | |
| class | IncompleteIncrementalTermination |
| This class acts as a wrapper for basic termination policies to be used by SVDIncompleteIncrementalLearning. More... | |
| class | MaxIterationTermination |
| This termination policy only terminates when the maximum number of iterations has been reached. More... | |
| class | NMFALSUpdate |
| This class implements a method titled 'Alternating Least Squares' described in the following paper: More... | |
| class | NMFMultiplicativeDistanceUpdate |
| The multiplicative distance update rules for matrices W and H. More... | |
| class | NMFMultiplicativeDivergenceUpdate |
| This follows a method described in the paper 'Algorithms for Non-negative. More... | |
| class | RandomAcolInitialization |
| This class initializes the W matrix of the AMF algorithm by averaging p randomly chosen columns of V. More... | |
| class | RandomInitialization |
| This initialization rule for AMF simply fills the W and H matrices with uniform random noise in [0, 1]. More... | |
| class | SimpleResidueTermination |
| This class implements a simple residue-based termination policy. More... | |
| class | SimpleToleranceTermination |
| This class implements residue tolerance termination policy. More... | |
| class | SVDBatchLearning |
| This class implements SVD batch learning with momentum. More... | |
| class | SVDCompleteIncrementalLearning |
| This class computes SVD using complete incremental batch learning, as described in the following paper: More... | |
| class | SVDCompleteIncrementalLearning< arma::sp_mat > |
| TODO : Merge this template specialized function for sparse matrix using common row_col_iterator. More... | |
| class | SVDIncompleteIncrementalLearning |
| This class computes SVD using incomplete incremental batch learning, as described in the following paper: More... | |
| class | ValidationRMSETermination |
| This class implements validation termination policy based on RMSE index. More... | |
Functions | |
| template<> | |
| void | SVDBatchLearning::HUpdate< arma::sp_mat > (const arma::sp_mat &V, const arma::mat &W, arma::mat &H) |
| template<> | |
| void | SVDBatchLearning::WUpdate< arma::sp_mat > (const arma::sp_mat &V, arma::mat &W, const arma::mat &H) |
| TODO : Merge this template specialized function for sparse matrix using common row_col_iterator. More... | |
| template<> | |
| void | SVDIncompleteIncrementalLearning::HUpdate< arma::sp_mat > (const arma::sp_mat &V, const arma::mat &W, arma::mat &H) |
| template<> | |
| void | SVDIncompleteIncrementalLearning::WUpdate< arma::sp_mat > (const arma::sp_mat &V, arma::mat &W, const arma::mat &H) |
| TODO : Merge this template specialized function for sparse matrix using common row_col_iterator. More... | |
Alternating Matrix Factorization.
| typedef amf::AMF<amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDBatchLearning> mlpack::amf::SparseSVDBatchFactorizer |
Add simple typedefs.
SparseSVDBatchFactorizer factorizes given sparse matrix V into two matrices W and H by gradient descent. SVD batch learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
| typedef amf::AMF<amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDCompleteIncrementalLearning<arma::sp_mat> > mlpack::amf::SparseSVDCompleteIncrementalFactorizer |
SparseSVDCompleteIncrementalFactorizer factorizes given sparse matrix V into two matrices W and H by complete incremental gradient descent.
SVD complete incremental learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
| typedef amf::AMF<amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDIncompleteIncrementalLearning> mlpack::amf::SparseSVDIncompleteIncrementalFactorizer |
SparseSVDIncompleteIncrementalFactorizer factorizes given sparse matrix V into two matrices W and H by incomplete incremental gradient descent.
SVD incomplete incremental learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
| typedef amf::AMF<amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDBatchLearning> mlpack::amf::SVDBatchFactorizer |
SparseSVDBatchFactorizer factorizes given matrix V into two matrices W and H by gradient descent.
SVD batch learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
| typedef amf::AMF<amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDCompleteIncrementalLearning<arma::mat> > mlpack::amf::SVDCompleteIncrementalFactorizer |
SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by complete incremental gradient descent.
SVD complete incremental learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
| typedef amf::AMF<amf::SimpleResidueTermination, amf::RandomAcolInitialization<>, amf::SVDIncompleteIncrementalLearning> mlpack::amf::SVDIncompleteIncrementalFactorizer |
SVDIncompleteIncrementalFactorizer factorizes given matrix V into two matrices W and H by incomplete incremental gradient descent.
SVD incomplete incremental learning is described in paper 'A Guide to singular Value Decomposition' by Chih-Chao Ma.
|
inline |
Definition at line 231 of file svd_batch_learning.hpp.
References mlpack::amf::SVDBatchLearning::kh, mlpack::amf::SVDBatchLearning::mH, mlpack::amf::SVDBatchLearning::momentum, and mlpack::amf::SVDBatchLearning::u.
|
inline |
TODO : Merge this template specialized function for sparse matrix using common row_col_iterator.
WUpdate function specialization for sparse matrix
Definition at line 203 of file svd_batch_learning.hpp.
References mlpack::amf::SVDBatchLearning::kw, mlpack::amf::SVDBatchLearning::momentum, mlpack::amf::SVDBatchLearning::mW, and mlpack::amf::SVDBatchLearning::u.
|
inline |
|
inline |
TODO : Merge this template specialized function for sparse matrix using common row_col_iterator.
template specialiazed functions for sparse matrices
Definition at line 163 of file svd_incomplete_incremental_learning.hpp.
References mlpack::amf::SVDIncompleteIncrementalLearning::currentUserIndex, mlpack::amf::SVDIncompleteIncrementalLearning::kw, and mlpack::amf::SVDIncompleteIncrementalLearning::u.
1.8.11