The BestBinaryNumericSplit is a splitting function for decision trees that will exhaustively search a numeric dimension for the best binary split.
More...
|
template<typename ElemType > |
static size_t | CalculateDirection (const ElemType &point, const arma::Col< ElemType > &classProbabilities, const AuxiliarySplitInfo< ElemType > &) |
| Given a point, calculate which child it should go to (left or right). More...
|
|
template<typename ElemType > |
static size_t | NumChildren (const arma::Col< ElemType > &, const AuxiliarySplitInfo< ElemType > &) |
| Returns 2, since the binary split always has two children. More...
|
|
template<typename VecType > |
static double | SplitIfBetter (const double bestGain, const VecType &data, const arma::Row< size_t > &labels, const size_t numClasses, const size_t minimumLeafSize, arma::Col< typename VecType::elem_type > &classProbabilities, AuxiliarySplitInfo< typename VecType::elem_type > &aux) |
| Check if we can split a node. More...
|
|
template<typename FitnessFunction>
class mlpack::tree::BestBinaryNumericSplit< FitnessFunction >
The BestBinaryNumericSplit is a splitting function for decision trees that will exhaustively search a numeric dimension for the best binary split.
- Template Parameters
-
FitnessFunction | Fitness function to use to calculate gain. |
Definition at line 22 of file best_binary_numeric_split.hpp.
template<typename FitnessFunction >
template<typename ElemType >
template<typename FitnessFunction >
template<typename ElemType >
template<typename FitnessFunction >
template<typename VecType >
static double mlpack::tree::BestBinaryNumericSplit< FitnessFunction >::SplitIfBetter |
( |
const double |
bestGain, |
|
|
const VecType & |
data, |
|
|
const arma::Row< size_t > & |
labels, |
|
|
const size_t |
numClasses, |
|
|
const size_t |
minimumLeafSize, |
|
|
arma::Col< typename VecType::elem_type > & |
classProbabilities, |
|
|
AuxiliarySplitInfo< typename VecType::elem_type > & |
aux |
|
) |
| |
|
static |
Check if we can split a node.
If we can split a node in a way that improves on 'bestGain', then we return the improved gain. Otherwise we return the value 'bestGain'. If a split is made, then classProbabilities and aux may be modified.
- Parameters
-
bestGain | Best gain seen so far (we'll only split if we find gain better than this). |
data | The dimension of data points to check for a split in. |
numCategories | Number of categories in the categorical data. |
labels | Labels for each point. |
numClasses | Number of classes in the dataset. |
minimumLeafSize | Minimum number of points in a leaf node for splitting. |
classProbabilities | Class probabilities vector, which may be filled with split information a successful split. |
aux | Auxiliary split information, which may be modified on a successful split. |
The documentation for this class was generated from the following file: