mlpack
master
|
The log-likelihood function for the logistic regression objective function. More...
Public Member Functions | |
LogisticRegressionFunction (const MatType &predictors, const arma::Row< size_t > &responses, const double lambda=0) | |
LogisticRegressionFunction (const MatType &predictors, const arma::Row< size_t > &responses, const arma::vec &initialPoint, const double lambda=0) | |
double | Evaluate (const arma::mat ¶meters) const |
Evaluate the logistic regression log-likelihood function with the given parameters. More... | |
double | Evaluate (const arma::mat ¶meters, const size_t i) const |
Evaluate the logistic regression log-likelihood function with the given parameters, but using only one data point. More... | |
const arma::mat & | GetInitialPoint () const |
Return the initial point for the optimization. More... | |
void | Gradient (const arma::mat ¶meters, arma::mat &gradient) const |
Evaluate the gradient of the logistic regression log-likelihood function with the given parameters. More... | |
void | Gradient (const arma::mat ¶meters, const size_t i, arma::mat &gradient) const |
Evaluate the gradient of the logistic regression log-likelihood function with the given parameters, and with respect to only one point in the dataset. More... | |
const arma::mat & | InitialPoint () const |
Return the initial point for the optimization. More... | |
arma::mat & | InitialPoint () |
Modify the initial point for the optimization. More... | |
const double & | Lambda () const |
Return the regularization parameter (lambda). More... | |
double & | Lambda () |
Modify the regularization parameter (lambda). More... | |
size_t | NumFunctions () const |
Return the number of separable functions (the number of predictor points). More... | |
const MatType & | Predictors () const |
Return the matrix of predictors. More... | |
const arma::vec & | Responses () const |
Return the vector of responses. More... | |
Private Attributes | |
arma::mat | initialPoint |
The initial point, from which to start the optimization. More... | |
double | lambda |
The regularization parameter for L2-regularization. More... | |
const MatType & | predictors |
The matrix of data points (predictors). More... | |
const arma::Row< size_t > & | responses |
The vector of responses to the input data points. More... | |
The log-likelihood function for the logistic regression objective function.
This is used by various mlpack optimizers to train a logistic regression model.
Definition at line 28 of file logistic_regression_function.hpp.
mlpack::regression::LogisticRegressionFunction< MatType >::LogisticRegressionFunction | ( | const MatType & | predictors, |
const arma::Row< size_t > & | responses, | ||
const double | lambda = 0 |
||
) |
mlpack::regression::LogisticRegressionFunction< MatType >::LogisticRegressionFunction | ( | const MatType & | predictors, |
const arma::Row< size_t > & | responses, | ||
const arma::vec & | initialPoint, | ||
const double | lambda = 0 |
||
) |
double mlpack::regression::LogisticRegressionFunction< MatType >::Evaluate | ( | const arma::mat & | parameters | ) | const |
Evaluate the logistic regression log-likelihood function with the given parameters.
Note that if a point has 0 probability of being classified directly with the given parameters, then Evaluate() will return nan (this is kind of a corner case and should not happen for reasonable models).
The optimum (minimum) of this function is 0.0, and occurs when each point is classified correctly with very high probability.
parameters | Vector of logistic regression parameters. |
Referenced by mlpack::regression::LogisticRegressionFunction< MatType >::Responses().
double mlpack::regression::LogisticRegressionFunction< MatType >::Evaluate | ( | const arma::mat & | parameters, |
const size_t | i | ||
) | const |
Evaluate the logistic regression log-likelihood function with the given parameters, but using only one data point.
This is useful for optimizers such as SGD, which require a separable objective function. Note that if the point has 0 probability of being classified correctly with the given parameters, then Evaluate() will return nan (this is kind of a corner case and should not happen for reasonable models).
The optimum (minimum) of this function is 0.0, and occurs when the point is classified correctly with very high probability.
parameters | Vector of logistic regression parameters. |
i | Index of point to use for objective function evaluation. |
|
inline |
Return the initial point for the optimization.
Definition at line 108 of file logistic_regression_function.hpp.
References mlpack::regression::LogisticRegressionFunction< MatType >::initialPoint.
void mlpack::regression::LogisticRegressionFunction< MatType >::Gradient | ( | const arma::mat & | parameters, |
arma::mat & | gradient | ||
) | const |
Evaluate the gradient of the logistic regression log-likelihood function with the given parameters.
parameters | Vector of logistic regression parameters. |
gradient | Vector to output gradient into. |
Referenced by mlpack::regression::LogisticRegressionFunction< MatType >::Responses().
void mlpack::regression::LogisticRegressionFunction< MatType >::Gradient | ( | const arma::mat & | parameters, |
const size_t | i, | ||
arma::mat & | gradient | ||
) | const |
Evaluate the gradient of the logistic regression log-likelihood function with the given parameters, and with respect to only one point in the dataset.
This is useful for optimizers such as SGD, which require a separable objective function.
parameters | Vector of logistic regression parameters. |
i | Index of points to use for objective function gradient evaluation. |
gradient | Vector to output gradient into. |
|
inline |
Return the initial point for the optimization.
Definition at line 41 of file logistic_regression_function.hpp.
References mlpack::regression::LogisticRegressionFunction< MatType >::initialPoint.
|
inline |
Modify the initial point for the optimization.
Definition at line 43 of file logistic_regression_function.hpp.
References mlpack::regression::LogisticRegressionFunction< MatType >::initialPoint.
|
inline |
Return the regularization parameter (lambda).
Definition at line 46 of file logistic_regression_function.hpp.
References mlpack::regression::LogisticRegressionFunction< MatType >::lambda.
|
inline |
Modify the regularization parameter (lambda).
Definition at line 48 of file logistic_regression_function.hpp.
References mlpack::regression::LogisticRegressionFunction< MatType >::lambda.
|
inline |
Return the number of separable functions (the number of predictor points).
Definition at line 111 of file logistic_regression_function.hpp.
|
inline |
Return the matrix of predictors.
Definition at line 51 of file logistic_regression_function.hpp.
References mlpack::regression::LogisticRegressionFunction< MatType >::predictors.
|
inline |
Return the vector of responses.
Definition at line 53 of file logistic_regression_function.hpp.
References mlpack::regression::LogisticRegressionFunction< MatType >::Evaluate(), mlpack::regression::LogisticRegressionFunction< MatType >::Gradient(), and mlpack::regression::LogisticRegressionFunction< MatType >::responses.
|
private |
The initial point, from which to start the optimization.
Definition at line 115 of file logistic_regression_function.hpp.
Referenced by mlpack::regression::LogisticRegressionFunction< MatType >::GetInitialPoint(), and mlpack::regression::LogisticRegressionFunction< MatType >::InitialPoint().
|
private |
The regularization parameter for L2-regularization.
Definition at line 121 of file logistic_regression_function.hpp.
Referenced by mlpack::regression::LogisticRegressionFunction< MatType >::Lambda().
|
private |
The matrix of data points (predictors).
Definition at line 117 of file logistic_regression_function.hpp.
Referenced by mlpack::regression::LogisticRegressionFunction< MatType >::Predictors().
|
private |
The vector of responses to the input data points.
Definition at line 119 of file logistic_regression_function.hpp.
Referenced by mlpack::regression::LogisticRegressionFunction< MatType >::Responses().