mlpack
master
|
Adam is an optimizer that computes individual adaptive learning rates for different parameters from estimates of first and second moments of the gradients. More...
Public Member Functions | |
Adam (DecomposableFunctionType &function, const double stepSize=0.001, const double beta1=0.9, const double beta2=0.999, const double eps=1e-8, const size_t maxIterations=100000, const double tolerance=1e-5, const bool shuffle=true) | |
Construct the Adam optimizer with the given function and parameters. More... | |
double | Beta1 () const |
Get the smoothing parameter. More... | |
double & | Beta1 () |
Modify the smoothing parameter. More... | |
double | Beta2 () const |
Get the second moment coefficient. More... | |
double & | Beta2 () |
Modify the second moment coefficient. More... | |
double | Epsilon () const |
Get the value used to initialise the mean squared gradient parameter. More... | |
double & | Epsilon () |
Modify the value used to initialise the mean squared gradient parameter. More... | |
const DecomposableFunctionType & | Function () const |
Get the instantiated function to be optimized. More... | |
DecomposableFunctionType & | Function () |
Modify the instantiated function. More... | |
size_t | MaxIterations () const |
Get the maximum number of iterations (0 indicates no limit). More... | |
size_t & | MaxIterations () |
Modify the maximum number of iterations (0 indicates no limit). More... | |
double | Optimize (arma::mat &iterate) |
Optimize the given function using Adam. More... | |
bool | Shuffle () const |
Get whether or not the individual functions are shuffled. More... | |
bool & | Shuffle () |
Modify whether or not the individual functions are shuffled. More... | |
double | StepSize () const |
Get the step size. More... | |
double & | StepSize () |
Modify the step size. More... | |
double | Tolerance () const |
Get the tolerance for termination. More... | |
double & | Tolerance () |
Modify the tolerance for termination. More... | |
Private Attributes | |
double | beta1 |
Exponential decay rate for the first moment estimates. More... | |
double | beta2 |
Exponential decay rate for the weighted infinity norm estimates. More... | |
double | eps |
The value used to initialise the mean squared gradient parameter. More... | |
DecomposableFunctionType & | function |
The instantiated function. More... | |
size_t | maxIterations |
The maximum number of allowed iterations. More... | |
bool | shuffle |
Controls whether or not the individual functions are shuffled when iterating. More... | |
double | stepSize |
The step size for each example. More... | |
double | tolerance |
The tolerance for termination. More... | |
Adam is an optimizer that computes individual adaptive learning rates for different parameters from estimates of first and second moments of the gradients.
For more information, see the following.
For Adam to work, a DecomposableFunctionType template parameter is required. This class must implement the following function:
size_t NumFunctions(); double Evaluate(const arma::mat& coordinates, const size_t i); void Gradient(const arma::mat& coordinates, const size_t i, arma::mat& gradient);
NumFunctions() should return the number of functions ( ), and in the other two functions, the parameter i refers to which individual function (or gradient) is being evaluated. So, for the case of a data-dependent function, such as NCA (see mlpack::nca::NCA), NumFunctions() should return the number of points in the dataset, and Evaluate(coordinates, 0) will evaluate the objective function on the first point in the dataset (presumably, the dataset is held internally in the DecomposableFunctionType).
DecomposableFunctionType | Decomposable objective function type to be minimized. |
mlpack::optimization::Adam< DecomposableFunctionType >::Adam | ( | DecomposableFunctionType & | function, |
const double | stepSize = 0.001 , |
||
const double | beta1 = 0.9 , |
||
const double | beta2 = 0.999 , |
||
const double | eps = 1e-8 , |
||
const size_t | maxIterations = 100000 , |
||
const double | tolerance = 1e-5 , |
||
const bool | shuffle = true |
||
) |
Construct the Adam optimizer with the given function and parameters.
The defaults here are not necessarily good for the given problem, so it is suggested that the values used be tailored to the task at hand. The maximum number of iterations refers to the maximum number of points that are processed (i.e., one iteration equals one point; one iteration does not equal one pass over the dataset).
function | Function to be optimized (minimized). |
stepSize | Step size for each iteration. |
beta1 | Exponential decay rate for the first moment estimates. |
beta2 | Exponential decay rate for the weighted infinity norm estimates. |
eps | Value used to initialise the mean squared gradient parameter. |
maxIterations | Maximum number of iterations allowed (0 means no limit). |
tolerance | Maximum absolute tolerance to terminate algorithm. |
shuffle | If true, the function order is shuffled; otherwise, each function is visited in linear order. |
|
inline |
Get the smoothing parameter.
Definition at line 115 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::beta1.
|
inline |
Modify the smoothing parameter.
Definition at line 117 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::beta1.
|
inline |
Get the second moment coefficient.
Definition at line 120 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::beta2.
|
inline |
Modify the second moment coefficient.
Definition at line 122 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::beta2.
|
inline |
Get the value used to initialise the mean squared gradient parameter.
Definition at line 125 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::eps.
|
inline |
Modify the value used to initialise the mean squared gradient parameter.
Definition at line 127 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::eps.
|
inline |
|
inline |
|
inline |
Get the maximum number of iterations (0 indicates no limit).
Definition at line 130 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::maxIterations.
|
inline |
Modify the maximum number of iterations (0 indicates no limit).
Definition at line 132 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::maxIterations.
double mlpack::optimization::Adam< DecomposableFunctionType >::Optimize | ( | arma::mat & | iterate | ) |
Optimize the given function using Adam.
The given starting point will be modified to store the finishing point of the algorithm, and the final objective value is returned.
iterate | Starting point (will be modified). |
|
inline |
Get whether or not the individual functions are shuffled.
Definition at line 140 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::shuffle.
|
inline |
Modify whether or not the individual functions are shuffled.
Definition at line 142 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::shuffle.
|
inline |
Get the step size.
Definition at line 110 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::stepSize.
|
inline |
Modify the step size.
Definition at line 112 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::stepSize.
|
inline |
Get the tolerance for termination.
Definition at line 135 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::tolerance.
|
inline |
Modify the tolerance for termination.
Definition at line 137 of file adam.hpp.
References mlpack::optimization::Adam< DecomposableFunctionType >::tolerance.
|
private |
Exponential decay rate for the first moment estimates.
Definition at line 152 of file adam.hpp.
Referenced by mlpack::optimization::Adam< DecomposableFunctionType >::Beta1().
|
private |
Exponential decay rate for the weighted infinity norm estimates.
Definition at line 155 of file adam.hpp.
Referenced by mlpack::optimization::Adam< DecomposableFunctionType >::Beta2().
|
private |
The value used to initialise the mean squared gradient parameter.
Definition at line 158 of file adam.hpp.
Referenced by mlpack::optimization::Adam< DecomposableFunctionType >::Epsilon().
|
private |
|
private |
The maximum number of allowed iterations.
Definition at line 161 of file adam.hpp.
Referenced by mlpack::optimization::Adam< DecomposableFunctionType >::MaxIterations().
|
private |
Controls whether or not the individual functions are shuffled when iterating.
Definition at line 168 of file adam.hpp.
Referenced by mlpack::optimization::Adam< DecomposableFunctionType >::Shuffle().
|
private |
The step size for each example.
Definition at line 149 of file adam.hpp.
Referenced by mlpack::optimization::Adam< DecomposableFunctionType >::StepSize().
|
private |
The tolerance for termination.
Definition at line 164 of file adam.hpp.
Referenced by mlpack::optimization::Adam< DecomposableFunctionType >::Tolerance().