mlpack
master
|
Adadelta is an optimizer that uses two ideas to improve upon the two main drawbacks of the Adagrad method: More...
Public Member Functions | |
AdaDelta (DecomposableFunctionType &function, const double rho=0.95, const double eps=1e-6, const size_t maxIterations=100000, const double tolerance=1e-5, const bool shuffle=true) | |
Construct the AdaDelta optimizer with the given function and parameters. More... | |
double | Epsilon () const |
Get the value used to initialise the mean squared gradient parameter. More... | |
double & | Epsilon () |
Modify the value used to initialise the mean squared gradient parameter. More... | |
const DecomposableFunctionType & | Function () const |
Get the instantiated function to be optimized. More... | |
DecomposableFunctionType & | Function () |
Modify the instantiated function. More... | |
size_t | MaxIterations () const |
Get the maximum number of iterations (0 indicates no limit). More... | |
size_t & | MaxIterations () |
Modify the maximum number of iterations (0 indicates no limit). More... | |
double | Optimize (arma::mat &iterate) |
Optimize the given function using AdaDelta. More... | |
double | Rho () const |
Get the smoothing parameter. More... | |
double & | Rho () |
Modify the smoothing parameter. More... | |
bool | Shuffle () const |
Get whether or not the individual functions are shuffled. More... | |
bool & | Shuffle () |
Modify whether or not the individual functions are shuffled. More... | |
double | Tolerance () const |
Get the tolerance for termination. More... | |
double & | Tolerance () |
Modify the tolerance for termination. More... | |
Private Attributes | |
double | eps |
The value used to initialise the mean squared gradient parameter. More... | |
DecomposableFunctionType & | function |
The instantiated function. More... | |
size_t | maxIterations |
The maximum number of allowed iterations. More... | |
double | rho |
The smoothing parameter. More... | |
bool | shuffle |
Controls whether or not the individual functions are shuffled when iterating. More... | |
double | tolerance |
The tolerance for termination. More... | |
Adadelta is an optimizer that uses two ideas to improve upon the two main drawbacks of the Adagrad method:
For more information, see the following.
For AdaDelta to work, a DecomposableFunctionType template parameter is required. This class must implement the following function:
size_t NumFunctions(); double Evaluate(const arma::mat& coordinates, const size_t i); void Gradient(const arma::mat& coordinates, const size_t i, arma::mat& gradient);
NumFunctions() should return the number of functions ( ), and in the other two functions, the parameter i refers to which individual function (or gradient) is being evaluated. So, for the case of a data-dependent function, such as NCA (see mlpack::nca::NCA), NumFunctions() should return the number of points in the dataset, and Evaluate(coordinates, 0) will evaluate the objective function on the first point in the dataset (presumably, the dataset is held internally in the DecomposableFunctionType).
DecomposableFunctionType | Decomposable objective function type to be minimized. |
Definition at line 63 of file ada_delta.hpp.
mlpack::optimization::AdaDelta< DecomposableFunctionType >::AdaDelta | ( | DecomposableFunctionType & | function, |
const double | rho = 0.95 , |
||
const double | eps = 1e-6 , |
||
const size_t | maxIterations = 100000 , |
||
const double | tolerance = 1e-5 , |
||
const bool | shuffle = true |
||
) |
Construct the AdaDelta optimizer with the given function and parameters.
The defaults here are not necessarily good for the given problem, so it is suggested that the values used be tailored to the task at hand. The maximum number of iterations refers to the maximum number of points that are processed (i.e., one iteration equals one point; one iteration does not equal one pass over the dataset).
function | Function to be optimized (minimized). |
rho | Smoothing constant |
eps | Value used to initialise the mean squared gradient parameter. |
maxIterations | Maximum number of iterations allowed (0 means no limit). |
tolerance | Maximum absolute tolerance to terminate algorithm. |
shuffle | If true, the function order is shuffled; otherwise, each function is visited in linear order. |
|
inline |
Get the value used to initialise the mean squared gradient parameter.
Definition at line 111 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::eps.
|
inline |
Modify the value used to initialise the mean squared gradient parameter.
Definition at line 113 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::eps.
|
inline |
Get the instantiated function to be optimized.
Definition at line 101 of file ada_delta.hpp.
|
inline |
Modify the instantiated function.
Definition at line 103 of file ada_delta.hpp.
|
inline |
Get the maximum number of iterations (0 indicates no limit).
Definition at line 116 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::maxIterations.
|
inline |
Modify the maximum number of iterations (0 indicates no limit).
Definition at line 118 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::maxIterations.
double mlpack::optimization::AdaDelta< DecomposableFunctionType >::Optimize | ( | arma::mat & | iterate | ) |
Optimize the given function using AdaDelta.
The given starting point will be modified to store the finishing point of the algorithm, and the final objective value is returned.
iterate | Starting point (will be modified). |
|
inline |
Get the smoothing parameter.
Definition at line 106 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::rho.
|
inline |
Modify the smoothing parameter.
Definition at line 108 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::rho.
|
inline |
Get whether or not the individual functions are shuffled.
Definition at line 126 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::shuffle.
|
inline |
Modify whether or not the individual functions are shuffled.
Definition at line 128 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::shuffle.
|
inline |
Get the tolerance for termination.
Definition at line 121 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::tolerance.
|
inline |
Modify the tolerance for termination.
Definition at line 123 of file ada_delta.hpp.
References mlpack::optimization::AdaDelta< DecomposableFunctionType >::tolerance.
|
private |
The value used to initialise the mean squared gradient parameter.
Definition at line 138 of file ada_delta.hpp.
Referenced by mlpack::optimization::AdaDelta< DecomposableFunctionType >::Epsilon().
|
private |
The instantiated function.
Definition at line 132 of file ada_delta.hpp.
|
private |
The maximum number of allowed iterations.
Definition at line 141 of file ada_delta.hpp.
Referenced by mlpack::optimization::AdaDelta< DecomposableFunctionType >::MaxIterations().
|
private |
The smoothing parameter.
Definition at line 135 of file ada_delta.hpp.
Referenced by mlpack::optimization::AdaDelta< DecomposableFunctionType >::Rho().
|
private |
Controls whether or not the individual functions are shuffled when iterating.
Definition at line 148 of file ada_delta.hpp.
Referenced by mlpack::optimization::AdaDelta< DecomposableFunctionType >::Shuffle().
|
private |
The tolerance for termination.
Definition at line 144 of file ada_delta.hpp.
Referenced by mlpack::optimization::AdaDelta< DecomposableFunctionType >::Tolerance().