mlpack
master
|
A sparse autoencoder is a neural network whose aim to learn compressed representations of the data, typically for dimensionality reduction, with a constraint on the activity of the neurons in the network. More...
Public Member Functions | |
SparseAutoencoder (const arma::mat &data, const size_t visibleSize, const size_t hiddenSize, const double lambda=0.0001, const double beta=3, const double rho=0.01) | |
Construct the sparse autoencoder model with the given training data. More... | |
SparseAutoencoder (OptimizerType< SparseAutoencoderFunction > &optimizer) | |
Construct the sparse autoencoder model with the given training data. More... | |
void | Beta (const double b) |
Sets the KL divergence parameter. More... | |
double | Beta () const |
Gets the KL divergence parameter. More... | |
void | GetNewFeatures (arma::mat &data, arma::mat &features) |
Transforms the provided data into the representation learned by the sparse autoencoder. More... | |
void | HiddenSize (const size_t hidden) |
Sets size of the hidden layer. More... | |
size_t | HiddenSize () const |
Gets the size of the hidden layer. More... | |
void | Lambda (const double l) |
Sets the L2-regularization parameter. More... | |
double | Lambda () const |
Gets the L2-regularization parameter. More... | |
void | Rho (const double r) |
Sets the sparsity parameter. More... | |
double | Rho () const |
Gets the sparsity parameter. More... | |
void | Sigmoid (const arma::mat &x, arma::mat &output) const |
Returns the elementwise sigmoid of the passed matrix, where the sigmoid function of a real number 'x' is [1 / (1 + exp(-x))]. More... | |
void | VisibleSize (const size_t visible) |
Sets size of the visible layer. More... | |
size_t | VisibleSize () const |
Gets size of the visible layer. More... | |
Private Attributes | |
double | beta |
KL divergence parameter. More... | |
size_t | hiddenSize |
Size of the hidden layer. More... | |
double | lambda |
L2-regularization parameter. More... | |
arma::mat | parameters |
Parameters after optimization. More... | |
double | rho |
Sparsity parameter. More... | |
size_t | visibleSize |
Size of the visible layer. More... | |
A sparse autoencoder is a neural network whose aim to learn compressed representations of the data, typically for dimensionality reduction, with a constraint on the activity of the neurons in the network.
Sparse autoencoders can be stacked together to learn a hierarchy of features, which provide a better representation of the data for classification. This is a method used in the recently developed field of deep learning. More technical details about the model can be found on the following webpage:
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
An example of how to use the interface is shown below:
This implementation allows the use of arbitrary mlpack optimizers via the OptimizerType template parameter.
OptimizerType | The optimizer to use; by default this is L-BFGS. Any mlpack optimizer can be used here. |
Definition at line 68 of file sparse_autoencoder.hpp.
mlpack::nn::SparseAutoencoder< OptimizerType >::SparseAutoencoder | ( | const arma::mat & | data, |
const size_t | visibleSize, | ||
const size_t | hiddenSize, | ||
const double | lambda = 0.0001 , |
||
const double | beta = 3 , |
||
const double | rho = 0.01 |
||
) |
Construct the sparse autoencoder model with the given training data.
This will train the model. The parameters 'lambda', 'beta' and 'rho' can be set optionally. Changing these parameters will have an effect on regularization and sparsity of the model.
data | Input data with each column as one example. |
visibleSize | Size of input vector expected at the visible layer. |
hiddenSize | Size of input vector expected at the hidden layer. |
lambda | L2-regularization parameter. |
beta | KL divergence parameter. |
rho | Sparsity parameter. |
mlpack::nn::SparseAutoencoder< OptimizerType >::SparseAutoencoder | ( | OptimizerType< SparseAutoencoderFunction > & | optimizer | ) |
Construct the sparse autoencoder model with the given training data.
This will train the model. This overload takes an already instantiated optimizer and uses it to train the model. The optimizer should hold an instantiated SparseAutoencoderFunction object for the function to operate upon. This option should be preferred when the optimizer options are to be changed.
optimizer | Instantiated optimizer with instantiated error function. |
|
inline |
Sets the KL divergence parameter.
Definition at line 160 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::beta.
|
inline |
Gets the KL divergence parameter.
Definition at line 166 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::beta.
void mlpack::nn::SparseAutoencoder< OptimizerType >::GetNewFeatures | ( | arma::mat & | data, |
arma::mat & | features | ||
) |
Transforms the provided data into the representation learned by the sparse autoencoder.
The function basically performs a feedforward computation using the learned weights, and returns the hidden layer activations.
data | Matrix of the provided data. |
features | The hidden layer representation of the provided data. |
|
inline |
Sets size of the hidden layer.
Definition at line 136 of file sparse_autoencoder.hpp.
|
inline |
Gets the size of the hidden layer.
Definition at line 142 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::hiddenSize.
|
inline |
Sets the L2-regularization parameter.
Definition at line 148 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::lambda.
|
inline |
Gets the L2-regularization parameter.
Definition at line 154 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::lambda.
|
inline |
Sets the sparsity parameter.
Definition at line 172 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::rho.
|
inline |
Gets the sparsity parameter.
Definition at line 178 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::rho.
|
inline |
Returns the elementwise sigmoid of the passed matrix, where the sigmoid function of a real number 'x' is [1 / (1 + exp(-x))].
x | Matrix of real values for which we require the sigmoid activation. |
Definition at line 118 of file sparse_autoencoder.hpp.
|
inline |
Sets size of the visible layer.
Definition at line 124 of file sparse_autoencoder.hpp.
|
inline |
Gets size of the visible layer.
Definition at line 130 of file sparse_autoencoder.hpp.
References mlpack::nn::SparseAutoencoder< OptimizerType >::visibleSize.
|
private |
KL divergence parameter.
Definition at line 193 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::Beta().
|
private |
Size of the hidden layer.
Definition at line 189 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::HiddenSize().
|
private |
L2-regularization parameter.
Definition at line 191 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::Lambda().
|
private |
Parameters after optimization.
Definition at line 185 of file sparse_autoencoder.hpp.
|
private |
Sparsity parameter.
Definition at line 195 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::Rho().
|
private |
Size of the visible layer.
Definition at line 187 of file sparse_autoencoder.hpp.
Referenced by mlpack::nn::SparseAutoencoder< OptimizerType >::VisibleSize().