mlpack  master
Classes | Public Types | Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType > Class Template Reference

The RASearchRules class is a template helper class used by RASearch class when performing rank-approximate search via random-sampling. More...

Classes

struct  CandidateCmp
 Compare two candidates based on the distance. More...
 

Public Types

typedef tree::TraversalInfo< TreeType > TraversalInfoType
 

Public Member Functions

 RASearchRules (const arma::mat &referenceSet, const arma::mat &querySet, const size_t k, MetricType &metric, const double tau=5, const double alpha=0.95, const bool naive=false, const bool sampleAtLeaves=false, const bool firstLeafExact=false, const size_t singleSampleLimit=20, const bool sameSet=false)
 Construct the RASearchRules object. More...
 
double BaseCase (const size_t queryIndex, const size_t referenceIndex)
 Get the distance from the query point to the reference point. More...
 
void GetResults (arma::Mat< size_t > &neighbors, arma::mat &distances)
 Store the list of candidates for each query point in the given matrices. More...
 
size_t NumDistComputations ()
 
size_t NumEffectiveSamples ()
 
double Rescore (const size_t queryIndex, TreeType &referenceNode, const double oldScore)
 Re-evaluate the score for recursion order. More...
 
double Rescore (TreeType &queryNode, TreeType &referenceNode, const double oldScore)
 Re-evaluate the score for recursion order. More...
 
double Score (const size_t queryIndex, TreeType &referenceNode)
 Get the score for recursion order. More...
 
double Score (const size_t queryIndex, TreeType &referenceNode, const double baseCaseResult)
 Get the score for recursion order. More...
 
double Score (TreeType &queryNode, TreeType &referenceNode)
 Get the score for recursion order. More...
 
double Score (TreeType &queryNode, TreeType &referenceNode, const double baseCaseResult)
 Get the score for recursion order, passing the base case result (in the situation where it may be needed to calculate the recursion order). More...
 
const TraversalInfoTypeTraversalInfo () const
 
TraversalInfoTypeTraversalInfo ()
 

Private Types

typedef std::pair< double, size_t > Candidate
 Candidate represents a possible candidate neighbor (distance, index). More...
 
typedef std::priority_queue< Candidate, std::vector< Candidate >, CandidateCmpCandidateList
 Use a priority queue to represent the list of candidate neighbors. More...
 

Private Member Functions

void InsertNeighbor (const size_t queryIndex, const size_t neighbor, const double distance)
 Helper function to insert a point into the list of candidate points. More...
 
double Score (const size_t queryIndex, TreeType &referenceNode, const double distance, const double bestDistance)
 Perform actual scoring for single-tree case. More...
 
double Score (TreeType &queryNode, TreeType &referenceNode, const double distance, const double bestDistance)
 Perform actual scoring for dual-tree case. More...
 

Private Attributes

std::vector< CandidateListcandidates
 Set of candidate neighbors for each point. More...
 
bool firstLeafExact
 Whether to do exact computation on the first leaf before any sampling. More...
 
const size_t k
 Number of neighbors to search for. More...
 
MetricType & metric
 The instantiated metric. More...
 
size_t numDistComputations
 
arma::Col< size_t > numSamplesMade
 The number of samples made for every query. More...
 
size_t numSamplesReqd
 The minimum number of samples required per query. More...
 
const arma::mat & querySet
 The query set. More...
 
const arma::mat & referenceSet
 The reference set. More...
 
bool sameSet
 If the query and reference set are identical, this is true. More...
 
bool sampleAtLeaves
 Whether to sample at leaves or just use all of it. More...
 
double samplingRatio
 The sampling ratio. More...
 
size_t singleSampleLimit
 The limit on the largest node that can be approximated by sampling. More...
 
TraversalInfoType traversalInfo
 

Detailed Description

template<typename SortPolicy, typename MetricType, typename TreeType>
class mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >

The RASearchRules class is a template helper class used by RASearch class when performing rank-approximate search via random-sampling.

Template Parameters
SortPolicyThe sort policy for distances.
MetricTypeThe metric to use for computation.
TreeTypeThe tree type to use; must adhere to the TreeType API.

Definition at line 31 of file ra_search_rules.hpp.

Member Typedef Documentation

template<typename SortPolicy , typename MetricType , typename TreeType >
typedef std::pair<double, size_t> mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Candidate
private

Candidate represents a possible candidate neighbor (distance, index).

Definition at line 250 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
typedef std::priority_queue<Candidate, std::vector<Candidate>, CandidateCmp> mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::CandidateList
private

Use a priority queue to represent the list of candidate neighbors.

Definition at line 262 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
typedef tree::TraversalInfo<TreeType> mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::TraversalInfoType

Definition at line 237 of file ra_search_rules.hpp.

Constructor & Destructor Documentation

template<typename SortPolicy , typename MetricType , typename TreeType >
mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::RASearchRules ( const arma::mat &  referenceSet,
const arma::mat &  querySet,
const size_t  k,
MetricType &  metric,
const double  tau = 5,
const double  alpha = 0.95,
const bool  naive = false,
const bool  sampleAtLeaves = false,
const bool  firstLeafExact = false,
const size_t  singleSampleLimit = 20,
const bool  sameSet = false 
)

Construct the RASearchRules object.

This is usually done from within the RASearch class at search time.

Parameters
referenceSetSet of reference data.
querySetSet of query data.
kNumber of neighbors to search for.
metricInstantiated metric.
tauThe rank-approximation in percentile of the data.
alphaThe desired success probability.
naiveIf true, the rank-approximate search will be performed by directly sampling the whole set instead of using the stratified sampling on the tree.
sampleAtLeavesSample at leaves for faster but less accurate computation.
firstLeafExactTraverse to the first leaf without approximation.
singleSampleLimitThe limit on the largest node that can be approximated by sampling.
sameSetIf true, the query and reference set are taken to be the same, and a query point will not return itself in the results.

Member Function Documentation

template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::BaseCase ( const size_t  queryIndex,
const size_t  referenceIndex 
)

Get the distance from the query point to the reference point.

This will update the list of candidates with the new point if appropriate.

Parameters
queryIndexIndex of query point.
referenceIndexIndex of reference point.
template<typename SortPolicy , typename MetricType , typename TreeType >
void mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::GetResults ( arma::Mat< size_t > &  neighbors,
arma::mat &  distances 
)

Store the list of candidates for each query point in the given matrices.

Parameters
neighborsMatrix storing lists of neighbors for each query point.
distancesMatrix storing distances of neighbors for each query point.
template<typename SortPolicy , typename MetricType , typename TreeType >
void mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::InsertNeighbor ( const size_t  queryIndex,
const size_t  neighbor,
const double  distance 
)
private

Helper function to insert a point into the list of candidate points.

Parameters
queryIndexIndex of point whose neighbors we are inserting into.
neighborIndex of reference point which is being inserted.
distanceDistance from query point to reference point.
template<typename SortPolicy , typename MetricType , typename TreeType >
size_t mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::NumDistComputations ( )
inline
template<typename SortPolicy , typename MetricType , typename TreeType >
size_t mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::NumEffectiveSamples ( )
inline
template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Rescore ( const size_t  queryIndex,
TreeType &  referenceNode,
const double  oldScore 
)

Re-evaluate the score for recursion order.

A low score indicates priority for recursion, while DBL_MAX indicates that the node should not be recursed into at all (it should be pruned). This is used when the score has already been calculated, but another recursion may have modified the bounds for pruning. So the old score is checked against the new pruning bound.

For rank-approximation, it also checks if the number of samples left for a query to satisfy the rank constraint is small enough at this point of the algorithm, then this node is approximated by sampling and given a new score of 'DBL_MAX'.

Parameters
queryIndexIndex of query point.
referenceNodeCandidate node to be recursed into.
oldScoreOld score produced by Score() (or Rescore()).
template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Rescore ( TreeType &  queryNode,
TreeType &  referenceNode,
const double  oldScore 
)

Re-evaluate the score for recursion order.

A low score indicates priority for recursion, while DBL_MAX indicates that the node should not be recursed into at all (it should be pruned). This is used when the score has already been calculated, but another recursion may have modified the bounds for pruning. So the old score is checked against the new pruning bound.

For the rank-approximation, we check if the referenceNode can be approximated by sampling. If it can be, enough samples are made for every query in the queryNode. No further query-tree traversal is performed.

The 'NumSamplesMade' query stat is propagated up the tree. And then if pruning occurs (by distance or by sampling), the 'NumSamplesMade' stat is not propagated down the tree. If no pruning occurs, the stat is propagated down the tree.

Parameters
queryNodeCandidate query node to recurse into.
referenceNodeCandidate reference node to recurse into.
oldScoreOld score produced by Socre() (or Rescore()).
template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Score ( const size_t  queryIndex,
TreeType &  referenceNode 
)

Get the score for recursion order.

A low score indicates priority for recursion, while DBL_MAX indicates that the node should not be recursed into at all (it should be pruned).

For rank-approximation, the scoring function first checks if pruning by distance is possible. If yes, then the node is given the score of 'DBL_MAX' and the expected number of samples from that node are added to the number of samples made for the query.

If no, then the function tries to see if the node can be pruned by approximation. If number of samples required from this node is small enough, then that number of samples are acquired from this node and the score is set to be 'DBL_MAX'.

If the pruning by approximation is not possible either, the algorithm continues with the usual tree-traversal.

Parameters
queryIndexIndex of query point.
referenceNodeCandidate node to be recursed into.
template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Score ( const size_t  queryIndex,
TreeType &  referenceNode,
const double  baseCaseResult 
)

Get the score for recursion order.

A low score indicates priority for recursion, while DBL_MAX indicates that the node should not be recursed into at all (it should be pruned).

For rank-approximation, the scoring function first checks if pruning by distance is possible. If yes, then the node is given the score of 'DBL_MAX' and the expected number of samples from that node are added to the number of samples made for the query.

If no, then the function tries to see if the node can be pruned by approximation. If number of samples required from this node is small enough, then that number of samples are acquired from this node and the score is set to be 'DBL_MAX'.

If the pruning by approximation is not possible either, the algorithm continues with the usual tree-traversal.

Parameters
queryIndexIndex of query point.
referenceNodeCandidate node to be recursed into.
baseCaseResultResult of BaseCase(queryIndex, referenceNode).
template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Score ( TreeType &  queryNode,
TreeType &  referenceNode 
)

Get the score for recursion order.

A low score indicates priority for recursionm while DBL_MAX indicates that the node should not be recursed into at all (it should be pruned).

For the rank-approximation, we check if the referenceNode can be approximated by sampling. If it can be, enough samples are made for every query in the queryNode. No further query-tree traversal is performed.

The 'NumSamplesMade' query stat is propagated up the tree. And then if pruning occurs (by distance or by sampling), the 'NumSamplesMade' stat is not propagated down the tree. If no pruning occurs, the stat is propagated down the tree.

Parameters
queryNodeCandidate query node to recurse into.
referenceNodeCandidate reference node to recurse into.
template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Score ( TreeType &  queryNode,
TreeType &  referenceNode,
const double  baseCaseResult 
)

Get the score for recursion order, passing the base case result (in the situation where it may be needed to calculate the recursion order).

A low score indicates priority for recursion, while DBL_MAX indicates that the node should not be recursed into at all (it should be pruned).

For the rank-approximation, we check if the referenceNode can be approximated by sampling. If it can be, enough samples are made for every query in the queryNode. No further query-tree traversal is performed.

The 'NumSamplesMade' query stat is propagated up the tree. And then if pruning occurs (by distance or by sampling), the 'NumSamplesMade' stat is not propagated down the tree. If no pruning occurs, the stat is propagated down the tree.

Parameters
queryNodeCandidate query node to recurse into.
referenceNodeCandidate reference node to recurse into.
baseCaseResultResult of BaseCase(queryIndex, referenceNode).
template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Score ( const size_t  queryIndex,
TreeType &  referenceNode,
const double  distance,
const double  bestDistance 
)
private

Perform actual scoring for single-tree case.

template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::Score ( TreeType &  queryNode,
TreeType &  referenceNode,
const double  distance,
const double  bestDistance 
)
private

Perform actual scoring for dual-tree case.

template<typename SortPolicy , typename MetricType , typename TreeType >
const TraversalInfoType& mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::TraversalInfo ( ) const
inline
template<typename SortPolicy , typename MetricType , typename TreeType >
TraversalInfoType& mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::TraversalInfo ( )
inline

Member Data Documentation

template<typename SortPolicy , typename MetricType , typename TreeType >
std::vector<CandidateList> mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::candidates
private

Set of candidate neighbors for each point.

Definition at line 265 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
bool mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::firstLeafExact
private

Whether to do exact computation on the first leaf before any sampling.

Definition at line 277 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
const size_t mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::k
private

Number of neighbors to search for.

Definition at line 268 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
MetricType& mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::metric
private

The instantiated metric.

Definition at line 271 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
size_t mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::numDistComputations
private
template<typename SortPolicy , typename MetricType , typename TreeType >
arma::Col<size_t> mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::numSamplesMade
private

The number of samples made for every query.

Definition at line 286 of file ra_search_rules.hpp.

Referenced by mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::NumEffectiveSamples().

template<typename SortPolicy , typename MetricType , typename TreeType >
size_t mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::numSamplesReqd
private

The minimum number of samples required per query.

Definition at line 283 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
const arma::mat& mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::querySet
private

The query set.

Definition at line 247 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
const arma::mat& mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::referenceSet
private

The reference set.

Definition at line 244 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
bool mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::sameSet
private

If the query and reference set are identical, this is true.

Definition at line 295 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
bool mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::sampleAtLeaves
private

Whether to sample at leaves or just use all of it.

Definition at line 274 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
double mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::samplingRatio
private

The sampling ratio.

Definition at line 289 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
size_t mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::singleSampleLimit
private

The limit on the largest node that can be approximated by sampling.

Definition at line 280 of file ra_search_rules.hpp.

template<typename SortPolicy , typename MetricType , typename TreeType >
TraversalInfoType mlpack::neighbor::RASearchRules< SortPolicy, MetricType, TreeType >::traversalInfo
private

The documentation for this class was generated from the following file: