mlpack  master
Public Member Functions | Private Attributes | List of all members
mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy > Class Template Reference

Public Member Functions

 NystroemMethod (const arma::mat &data, KernelType &kernel, const size_t rank)
 Create the NystroemMethod object. More...
 
void Apply (arma::mat &output)
 Apply the low-rank factorization to obtain an output matrix G such that K' = G * G^T. More...
 
void GetKernelMatrix (const arma::mat *data, arma::mat &miniKernel, arma::mat &semiKernel)
 Construct the kernel matrix with matrix that contains the selected points. More...
 
void GetKernelMatrix (const arma::Col< size_t > &selectedPoints, arma::mat &miniKernel, arma::mat &semiKernel)
 Construct the kernel matrix with the selected points. More...
 

Private Attributes

const arma::mat & data
 The reference dataset. More...
 
KernelType & kernel
 The locally stored kernel, if it is necessary. More...
 
const size_t rank
 Rank used for matrix approximation. More...
 

Detailed Description

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
class mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >

Definition at line 28 of file nystroem_method.hpp.

Constructor & Destructor Documentation

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >::NystroemMethod ( const arma::mat &  data,
KernelType &  kernel,
const size_t  rank 
)

Create the NystroemMethod object.

The constructor here does not really do anything.

Parameters
dataData matrix.
kernelKernel to be used for computation.
rankRank to be used for matrix approximation.

Member Function Documentation

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
void mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >::Apply ( arma::mat &  output)

Apply the low-rank factorization to obtain an output matrix G such that K' = G * G^T.

Parameters
outputMatrix to store kernel approximation into.

Referenced by mlpack::kpca::NystroemKernelRule< KernelType, PointSelectionPolicy >::ApplyKernelMatrix().

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
void mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >::GetKernelMatrix ( const arma::mat *  data,
arma::mat &  miniKernel,
arma::mat &  semiKernel 
)

Construct the kernel matrix with matrix that contains the selected points.

Parameters
dataData matrix pointer.
miniKernelto store the constructed mini-kernel matrix in.
miniKernelto store the constructed semi-kernel matrix in.
template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
void mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >::GetKernelMatrix ( const arma::Col< size_t > &  selectedPoints,
arma::mat &  miniKernel,
arma::mat &  semiKernel 
)

Construct the kernel matrix with the selected points.

Parameters
pointsIndices of selected points.
miniKernelto store the constructed mini-kernel matrix in.
miniKernelto store the constructed semi-kernel matrix in.

Member Data Documentation

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
const arma::mat& mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >::data
private

The reference dataset.

Definition at line 73 of file nystroem_method.hpp.

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
KernelType& mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >::kernel
private

The locally stored kernel, if it is necessary.

Definition at line 75 of file nystroem_method.hpp.

template<typename KernelType, typename PointSelectionPolicy = KMeansSelection<>>
const size_t mlpack::kernel::NystroemMethod< KernelType, PointSelectionPolicy >::rank
private

Rank used for matrix approximation.

Definition at line 77 of file nystroem_method.hpp.


The documentation for this class was generated from the following file: