mlpack  master
Public Member Functions | Private Attributes | List of all members
mlpack::kernel::EpanechnikovKernel Class Reference

The Epanechnikov kernel, defined as. More...

Public Member Functions

 EpanechnikovKernel (const double bandwidth=1.0)
 Instantiate the Epanechnikov kernel with the given bandwidth (default 1.0). More...
 
template<typename VecTypeA , typename VecTypeB >
double ConvolutionIntegral (const VecTypeA &a, const VecTypeB &b)
 Obtains the convolution integral [integral of K(||x-a||) K(||b-x||) dx] for the two vectors. More...
 
template<typename VecTypeA , typename VecTypeB >
double Evaluate (const VecTypeA &a, const VecTypeB &b) const
 Evaluate the Epanechnikov kernel on the given two inputs. More...
 
double Evaluate (const double distance) const
 Evaluate the Epanechnikov kernel given that the distance between the two input points is known. More...
 
double Gradient (const double distance) const
 Evaluate the Gradient of Epanechnikov kernel given that the distance between the two input points is known. More...
 
double GradientForSquaredDistance (const double distanceSquared) const
 Evaluate the Gradient of Epanechnikov kernel given that the squared distance between the two input points is known. More...
 
double Normalizer (const size_t dimension)
 Compute the normalizer of this Epanechnikov kernel for the given dimension. More...
 
template<typename Archive >
void Serialize (Archive &ar, const unsigned int version)
 Serialize the kernel. More...
 

Private Attributes

double bandwidth
 Bandwidth of the kernel. More...
 
double inverseBandwidthSquared
 Cached value of the inverse bandwidth squared (to speed up computation). More...
 

Detailed Description

The Epanechnikov kernel, defined as.

\[ K(x, y) = \max \{0, 1 - || x - y ||^2_2 / b^2 \} \]

where $ b $ is the bandwidth the of the kernel (defaults to 1.0).

Definition at line 30 of file epanechnikov_kernel.hpp.

Constructor & Destructor Documentation

mlpack::kernel::EpanechnikovKernel::EpanechnikovKernel ( const double  bandwidth = 1.0)
inline

Instantiate the Epanechnikov kernel with the given bandwidth (default 1.0).

Parameters
bandwidthBandwidth of the kernel.

Definition at line 38 of file epanechnikov_kernel.hpp.

References ConvolutionIntegral(), Evaluate(), Gradient(), GradientForSquaredDistance(), Normalizer(), and Serialize().

Member Function Documentation

template<typename VecTypeA , typename VecTypeB >
double mlpack::kernel::EpanechnikovKernel::ConvolutionIntegral ( const VecTypeA &  a,
const VecTypeB &  b 
)

Obtains the convolution integral [integral of K(||x-a||) K(||b-x||) dx] for the two vectors.

Template Parameters
VecTypeType of vector (arma::vec, arma::spvec should be expected).
Parameters
aFirst vector.
bSecond vector.
Returns
the convolution integral value.

Referenced by EpanechnikovKernel().

template<typename VecTypeA , typename VecTypeB >
double mlpack::kernel::EpanechnikovKernel::Evaluate ( const VecTypeA &  a,
const VecTypeB &  b 
) const

Evaluate the Epanechnikov kernel on the given two inputs.

Template Parameters
VecTypeAType of first vector.
VecTypeBType of second vector.
Parameters
aOne input vector.
bThe other input vector.

Referenced by EpanechnikovKernel().

double mlpack::kernel::EpanechnikovKernel::Evaluate ( const double  distance) const

Evaluate the Epanechnikov kernel given that the distance between the two input points is known.

double mlpack::kernel::EpanechnikovKernel::Gradient ( const double  distance) const

Evaluate the Gradient of Epanechnikov kernel given that the distance between the two input points is known.

Referenced by EpanechnikovKernel().

double mlpack::kernel::EpanechnikovKernel::GradientForSquaredDistance ( const double  distanceSquared) const

Evaluate the Gradient of Epanechnikov kernel given that the squared distance between the two input points is known.

Referenced by EpanechnikovKernel().

double mlpack::kernel::EpanechnikovKernel::Normalizer ( const size_t  dimension)

Compute the normalizer of this Epanechnikov kernel for the given dimension.

Parameters
dimensionDimension to calculate the normalizer for.

Referenced by EpanechnikovKernel().

template<typename Archive >
void mlpack::kernel::EpanechnikovKernel::Serialize ( Archive &  ar,
const unsigned int  version 
)

Serialize the kernel.

Referenced by EpanechnikovKernel().

Member Data Documentation

double mlpack::kernel::EpanechnikovKernel::bandwidth
private

Bandwidth of the kernel.

Definition at line 100 of file epanechnikov_kernel.hpp.

double mlpack::kernel::EpanechnikovKernel::inverseBandwidthSquared
private

Cached value of the inverse bandwidth squared (to speed up computation).

Definition at line 102 of file epanechnikov_kernel.hpp.


The documentation for this class was generated from the following file: